182 resultados para language transfer
Horizontal transfer of exosomal microRNAs transduce apoptotic signals between pancreatic beta-cells.
Resumo:
BACKGROUND: Diabetes mellitus is a common metabolic disorder characterized by dysfunction of insulin-secreting pancreatic beta-cells. MicroRNAs are important regulators of beta-cell activities. These non-coding RNAs have recently been discovered to exert their effects not only inside the cell producing them but, upon exosome-mediated transfer, also in other recipient cells. This novel communication mode remains unexplored in pancreatic beta-cells. In the present study, the microRNA content of exosomes released by beta-cells in physiological and physiopathological conditions was analyzed and the biological impact of their transfer to recipient cells investigated. RESULTS: Exosomes were isolated from the culture media of MIN6B1 and INS-1 derived 832/13 beta-cell lines and from mice, rat or human islets. Global profiling revealed that the microRNAs released in MIN6B1 exosomes do not simply reflect the content of the cells of origin. Indeed, while a subset of microRNAs was preferentially released in exosomes others were selectively retained in the cells. Moreover, exposure of MIN6B1 cells to inflammatory cytokines changed the release of several microRNAs. The dynamics of microRNA secretion and their potential transfer to recipient cells were next investigated. As a proof-of-concept, we demonstrate that if cel-miR-238, a C. Elegans microRNA not present in mammalian cells, is expressed in MIN6B1 cells a fraction of it is released in exosomes and is transferred to recipient beta-cells. Furthermore, incubation of untreated MIN6B1 or mice islet cells in the presence of microRNA-containing exosomes isolated from the culture media of cytokine-treated MIN6B1 cells triggers apoptosis of recipient cells. In contrast, exosomes originating from cells not exposed to cytokines have no impact on cell survival. Apoptosis induced by exosomes produced by cytokine-treated cells was prevented by down-regulation of the microRNA-mediating silencing protein Ago2 in recipient cells, suggesting that the effect is mediated by the non-coding RNAs. CONCLUSIONS: Taken together, our results suggest that beta-cells secrete microRNAs that can be transferred to neighboring beta-cells. Exposure of donor cells to pathophysiological conditions commonly associated with diabetes modifies the release of microRNAs and affects survival of recipient beta-cells. Our results support the concept that exosomal microRNAs transfer constitutes a novel cell-to-cell communication mechanism regulating the activity of pancreatic beta-cells.
Resumo:
The peroxisome proliferator-activated receptor (PPAR)-β/δ has emerged as a promising therapeutic target for treating dyslipidemia, including beneficial effects on HDL cholesterol (HDL-C). In the current study, we determined the effects of the PPAR-β/δ agonist GW0742 on HDL composition and the expression of liver HDL-related genes in mice and cultured human cells. The experiments were carried out in C57BL/6 wild-type, LDL receptor (LDLR)-deficient mice and PPAR-β/δ-deficient mice treated with GW0742 (10mg/kg/day) or a vehicle solution for 14 days. GW0742 upregulated liver phospholipid transfer protein (Pltp) gene expression and increased serum PLTP activity in mice. When given to wild-type mice, GW0742 significantly increased serum HDL-C and HDL phospholipids; GW0742 also raised serum potential to generate preβ-HDL formation. The GW0742-mediated effects on liver Pltp expression and serum enzyme activity were completely abolished in PPAR-β/δ-deficient mice. GW0742 also stimulated PLTP mRNA expression in mouse J774 macrophages, differentiated human THP-1 macrophages and human hepatoma Huh7. Collectively, our findings demonstrate a common transcriptional upregulation by GW0742-activated PPAR-β/δ of Pltp expression in cultured cells and in mouse liver resulting in enhanced serum PLTP activity. Our results also indicate that PPAR-β/δ activation may modulate PLTP-mediated preβ-HDL formation and macrophage cholesterol efflux.