178 resultados para fungal communities, plant assemblage, elevation, 454 pyrosequencing , species distribution models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell-wall mechanical properties play a key role in the growth and the protection of plants. However, little is known about genuine wall mechanical properties and their growth-related dynamics at subcellular resolution and in living cells. Here, we used atomic force microscopy (AFM) stiffness tomography to explore stiffness distribution in the cell wall of suspension-cultured Arabidopsis thaliana as a model of primary, growing cell wall. For the first time that we know of, this new imaging technique was performed on living single cells of a higher plant, permitting monitoring of the stiffness distribution in cell-wall layers as a function of the depth and its evolution during the different growth phases. The mechanical measurements were correlated with changes in the composition of the cell wall, which were revealed by Fourier-transform infrared (FTIR) spectroscopy. In the beginning and end of cell growth, the average stiffness of the cell wall was low and the wall was mechanically homogenous, whereas in the exponential growth phase, the average wall stiffness increased, with increasing heterogeneity. In this phase, the difference between the superficial and deep wall stiffness was highest. FTIR spectra revealed a relative increase in the polysaccharide/lignin content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate-driven range fluctuations during the Pleistocene have continuously reshaped species distribution leading to populations of contrasting genetic diversity. Contemporary climate change is similarly influencing species distribution and population structure, with important consequences for patterns of genetic diversity and species' evolutionary potential1. Yet few studies assess the impacts of global climatic changes on intraspecific genetic variation2, 3, 4, 5. Here, combining analyses of molecular data with time series of predicted species distributions and a model of diffusion through time over the past 21 kyr, we unravel caribou response to past and future climate changes across its entire Holarctic distribution. We found that genetic diversity is geographically structured with two main caribou lineages, one originating from and confined to Northeastern America, the other originating from Euro-Beringia but also currently distributed in western North America. Regions that remained climatically stable over the past 21 kyr maintained a high genetic diversity and are also predicted to experience higher climatic stability under future climate change scenarios. Our interdisciplinary approach, combining genetic data and spatial analyses of climatic stability (applicable to virtually any taxon), represents a significant advance in inferring how climate shapes genetic diversity and impacts genetic structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new indicator taxa approach to the prediction of climate change effects on biodiversity at the national level in Switzerland. As indicators, we select a set of the most widely distributed species that account for 95% of geographical variation in sampled species richness of birds, butterflies, and vascular plants. Species data come from a national program designed to monitor spatial and temporal trends in species richness. We examine some opportunities and limitations in using these data. We develop ecological niche models for the species as functions of both climate and land cover variables. We project these models to the future using climate predictions that correspond to two IPCC 3rd assessment scenarios for the development of 'greenhouse' gas emissions. We find that models that are calibrated with Swiss national monitoring data perform well in 10-fold cross-validation, but can fail to capture the hot-dry end of environmental gradients that constrain some species distributions. Models for indicator species in all three higher taxa predict that climate change will result in turnover in species composition even where there is little net change in predicted species richness. Indicator species from high elevations lose most areas of suitable climate even under the relatively mild B2 scenario. We project some areas to increase in the number of species for which climate conditions are suitable early in the current century, but these areas become less suitable for a majority of species by the end of the century. Selection of indicator species based on rank prevalence results in a set of models that predict observed species richness better than a similar set of species selected based on high rank of model AUC values. An indicator species approach based on selected species that are relatively common may facilitate the use of national monitoring data for predicting climate change effects on the distribution of biodiversity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a multivariate approach to the study of geographic species distribution which does not require absence data. Building on Hutchinson's concept of the ecological niche, this factor analysis compares, in the multidimensional space of ecological variables, the distribution of the localities where the focal species was observed to a reference set describing the whole study area. The first factor extracted maximizes the marginality of the focal species, defined as the ecological distance between the species optimum and the mean habitat within the reference area. The other factors maximize the specialization of this focal species, defined as the ratio of the ecological variance in mean habitat to that observed for the focal species. Eigenvectors and eigenvalues are readily interpreted and can be used to build habitat-suitability maps. This approach is recommended in Situations where absence data are not available (many data banks), unreliable (most cryptic or rare species), or meaningless (invaders). We provide an illustration and validation of the method for the alpine ibex, a species reintroduced in Switzerland which presumably has not yet recolonized its entire range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AimOur aim was to understand the interplay of heterogeneous climatic and spatial landscapes in shaping the distribution of nuclear microsatellite variation in burrowing parrots, Cyanoliseus patagonus. Given the marked phenotypic differences between populations of burrowing parrots we hypothesized an important role of geographical as well climatic heterogeneity in the population structure of this species. LocationSouthern South America. MethodsWe applied a landscape genetics approach to investigate the explicit patterns of genetic spatial autocorrelation based on both geography and climate using spatial principal component analysis (sPCA). This necessitated a novel statistical estimation of the species climatic landscape, considering temperature- and precipitation-based variables separately to evaluate their weight in shaping the distribution of genetic variation in our model system. ResultsGeographical and climatic heterogeneity successfully explained molecular variance in burrowing parrots. sPCA divided the species distribution into two main areas, Patagonia and the pre-Andes, which were connected by an area of geographical and climatic transition. Moreover, sPCA revealed cryptic and conservation-relevant genetic structure: the pre-Andean populations and the transition localities were each divided into two groups, each management units for conservation. Main conclusionssPCA, a method originally developed for spatial genetics, allowed us to unravel the genetic structure related to spatial and climatic landscapes and to visualize these patterns in landscape space. These novel climatic inferences underscore the importance of our modified sPCA approach in revealing how climatic variables can drive cryptic patterns of genetic structure, making the approach potentially useful in the study of any species distributed over a climatically heterogeneous landscape.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies on niche evolution allow us to establish how species niches have changed over time as well as to identify how long-term evolutionary processes have led to present-day species distributions. Here, we investigate the patterns of climatic niche evolution in Tynanthus (Bignonieae, Bignoniaceae), a genus comprising narrowly distributed species. We test the hypothesis that niche conservatism has played an important role in the diversification history of this group of Neotropical lianas. For that, we perform univariate and multivariate comparisons between species' climatic niches and associated environmental data with information on species' phylogenetic relationships. We encountered considerable divergence in niches among species, indicating that niche conservatism in climatic variables has does not seem to havenot played a key role in the diversification of the genus. Our results are used as a basis to discuss patterns of ecological niche evolution in the group and to suggest novel approaches for future analyses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The perceived low levels of genetic diversity, poor interspecific competitive and defensive ability, and loss of dispersal capacities of insular lineages have driven the view that oceanic islands are evolutionary dead ends. Focusing on the Atlantic bryophyte flora distributed across the archipelagos of the Azores, Madeira, the Canary Islands, Western Europe, and northwestern Africa, we used an integrative approach with species distribution modeling and population genetic analyses based on approximate Bayesian computation to determine whether this view applies to organisms with inherent high dispersal capacities. Genetic diversity was found to be higher in island than in continental populations, contributing to mounting evidence that, contrary to theoretical expectations, island populations are not necessarily genetically depauperate. Patterns of genetic variation among island and continental populations consistently fitted those simulated under a scenario of de novo foundation of continental populations from insular ancestors better than those expected if islands would represent a sink or a refugium of continental biodiversity. We, suggest that the northeastern Atlantic archipelagos have played a key role as a stepping stone for transoceanic migrants. Our results challenge the traditional notion that oceanic islands are the end of the colonization road and illustrate the significant role of oceanic islands as reservoirs of novel biodiversity for the assembly of continental floras.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ingvaldsen et al. comment on our study assessing global fish interchanges between the North Atlantic and Pacific oceans for more than 500 species during the entire 21st century. They propose that discrepancies between our model projections and observed data for cod in the Barents Sea are the result of the choice of Atmosphere-Ocean General Circulation Models (AOGCMs). We address this assertion here, re-running the cod model with additional observation data from the Barents Sea1, 3, and show that the lack of open-access, archived data for the Barents Sea was the primary cause of local prediction mismatch. This finding recalls the importance of systematic deposit of biodiversity data in global databases

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Environmental gradients have been postulated to generate patterns of diversity and diet specialization, in which more stable environments, such as tropical regions, should promote higher diversity and specialization. Using field sampling and phylogenetic analyses of butterfly fauna over an entire alpine region, we show that butterfly specialization (measured as the mean phylogenetic distance between utilized host plants) decreases at higher elevations, alongside a decreasing gradient of plant diversity. Consistent with current hypotheses on the relationship between biodiversity and the strength of species interactions, we experimentally show that a higher level of generalization at high elevations is associated with lower levels of plant resistance: across 16 pairs of plant species, low-elevation plants were more resistant vis-à-vis their congeneric alpine relatives. Thus, the links between diversity, herbivore diet specialization, and plant resistance along an elevation gradient suggest a causal relationship analogous to that hypothesized along latitudinal gradients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissecting drivers of plant defence investment remains central for understanding the assemblage of communities across different habitats. There is increasing evidence that direct defence strategies against herbivores, including secondary metabolites production, differ along ecological gradients in response to variation in biotic and abiotic conditions. In contrast, intraspecific variation in indirect defences remains unexplored. Here, we investigated variation in herbivory rate, resistance to herbivores, and indirect defences in ant-attracting Vicia species along the elevation gradient of the Alps. Specifically, we compared volatile organic compounds (VOCs) and ant attraction in high and low elevation ecotypes. Consistent with adaptation to the lower herbivory conditions that we detected at higher elevations in the field, high elevation plants were visited by fewer ants and were more susceptible to herbivore attack. In parallel, constitutive volatile organic compound production and subsequent ant attraction were lower in the high elevation ecotypes. We observed an elevation-driven trade-off between constitutive and inducible production of VOCs and ant attraction along the environmental cline. At higher elevations, inducible defences increased, while constitutive defence decreased, suggesting that the high elevation ecotypes compensate for lower indirect constitutive defences only after herbivore attack. Synthesis. Overall, direct and indirect defences of plants vary along elevation gradients. Our findings show that plant allocation to defences are subject to trade-offs depending on local conditions, and point to a feedback mechanism linking local herbivore pressure, predator abundance and the defence investment of plants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The trend of closely related taxa to retain similar environmental preferences mediated by inherited traits suggests that several patterns observed at the community scale originate from longer evolutionary processes. While the effects of phylogenetic relatedness have been previously studied within a single genus or family, lineage-specific effects on the ecological processes governing community assembly have rarely been studied for entire communities or flora. Here, we measured how community phylogenetic structure varies across a wide elevation gradient for plant lineages represented by thirty-five families, using a co-occurrence index and net relatedness index (NRI). We propose a framework that analyses each lineage separately and reveals the trend of ecological assembly at tree nodes. We found prevailing phylogenetic clustering for more ancient nodes and overdispersion in more recent tree nodes. Closely related species may thus rapidly evolve new environmental tolerances to radiate into distinct communities, while older lineages likely retain inherent environmental tolerances to occupy communities in similar environments, either through efficient dispersal mechanisms or the exclusion of older lineages with more divergent environmental tolerances. Our study illustrates the importance of disentangling the patterns of community assembly among lineages to better interpret the ecological role of traits. It also sheds light on studies reporting absence of phylogenetic signal, and opens new perspectives on the analysis of niche and trait conservatism across lineages.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fungal symbionts commonly occur in plants influencing host growth, physiology, and ecology (Carlile et al., 2001). However, while whole-plant growth responses to biotrophic fungi are readily demonstrated, it has been much more difficult to identify and detect the physiological mechanisms responsible. Previous work on the clonal grass Glyceria striata has revealed that the systemic fungal endophyte Epichloë glyceriae has a positive effect on clonal growth of its host (Pan & Clay, 2002; 2003). The latest study from these authors, in this issue (pp. 467- 475), now suggests that increased carbon movement in hosts infected by E. glyceriae may function as one mechanism by which endophytic fungi could increase plant growth. Given the widespread distribution of both clonal plants and symbiotic fungi, this research will have implications for our understanding of the ecology and evolution of fungus-plant associations in natural communities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Convention on Biological Diversity (CBD) aims at the conservation of all three levels of biodiversity, that is, ecosystems, species and genes. Genetic diversity represents evolutionary potential and is important for ecosystem functioning. Unfortunately, genetic diversity in natural populations is hardly considered in conservation strategies because it is difficult to measure and has been hypothesised to co-vary with species richness. This means that species richness is taken as a surrogate of genetic diversity in conservation planning, though their relationship has not been properly evaluated. We tested whether the genetic and species levels of biodiversity co-vary, using a large-scale and multi-species approach. We chose the high-mountain flora of the Alps and the Carpathians as study systems and demonstrate that species richness and genetic diversity are not correlated. Species richness thus cannot act as a surrogate for genetic diversity. Our results have important consequences for implementing the CBD when designing conservation strategies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

* Arbuscular mycorrhizal fungi (AMF) are plant symbionts that improve floristic diversity and ecosystem productivity. Many AMF species are generalists with wide host ranges. Arbuscular mycorrhizal fungi individuals are heterokaryotic, and AMF populations are genetically diverse. Populations of AMF harbor two levels of genetic diversity on which selection can act, namely among individuals and within individuals. Whether environmental factors alter genetic diversity within populations is still unknown. * Here, we measured genetic changes and changes in fitness-related traits of genetically distinct AMF individuals from one field, grown with different concentrations of available phosphate or different host species. * We found significant genotype-by-environment interactions for AMF fitness traits in response to these treatments. Host identity had a strong effect on the fitness of different AMF, unearthing a specificity of response within Glomus intraradices. Arbuscular mycorrhizal fungi individuals grown in novel environments consistently showed a reduced presence of polymorphic genetic markers, providing some evidence for host or phosphate-induced genetic change in AMF. * Given that AMF individuals can form extensive hyphal networks colonizing different hosts simultaneously, contrasting habitats or soil properties may lead to evolution in the population. Local selection may alter the structure of AMF populations and maintain genetic diversity, potentially even within the hyphal network of one fungus.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Arbuscular mycorrhizal fungi (AMF) form symbioses with most plant species. They are ecologically important determinants of plant growth and diversity. Considerable genetic variation occurs in AMF populations. Thus, plants are exposed to AMF of varying relatedness to each other. Very little is known about either the effects of coexisting AMF on plant growth or which factors influence intraspecific AMF coexistence within roots. No studies have addressed whether the genetics of coexisting AMF, and more specifically their relatedness, influences plant growth and AMF coexistence. Relatedness is expected to influence coexistence between individuals, and it has been suggested that decreasing ability of symbionts to coexist can have negative effects on the growth of the host. We tested the effect of a gradient of AMF genetic relatedness on the growth of two plant species. Increasing relatedness between AMFs lead to markedly greater plant growth (27% biomass increase with closely related compared to distantly related AMF). In one plant species, closely related AMF coexisted in fairly equal proportions but decreasing relatedness lead to a very strong disequilibrium between AMF in roots, indicating much stronger competition. Given the strength of the effects with such a shallow relatedness gradient and the fact that in the field plants are exposed to a steeper gradient, we consider that AMF relatedness can have a strong role in plant growth and the ability of AMF to coexist. We conclude that AMF relatedness is a driver of plant growth and that relatedness is also a strong driver of intraspecific coexistence of these ecologically important symbionts.