200 resultados para floral organ identity
Resumo:
BACKGROUND: Cytomegalovirus (CMV) disease remains an important problem in solid-organ transplant recipients, with the greatest risk among donor CMV-seropositive, recipient-seronegative (D(+)/R(-)) patients. CMV-specific cell-mediated immunity may be able to predict which patients will develop CMV disease. METHODS: We prospectively included D(+)/R(-) patients who received antiviral prophylaxis. We used the Quantiferon-CMV assay to measure interferon-γ levels following in vitro stimulation with CMV antigens. The test was performed at the end of prophylaxis and 1 and 2 months later. The primary outcome was the incidence of CMV disease at 12 months after transplant. We calculated positive and negative predictive values of the assay for protection from CMV disease. RESULTS: Overall, 28 of 127 (22%) patients developed CMV disease. Of 124 evaluable patients, 31 (25%) had a positive result, 81 (65.3%) had a negative result, and 12 (9.7%) had an indeterminate result (negative mitogen and CMV antigen) with the Quantiferon-CMV assay. At 12 months, patients with a positive result had a subsequent lower incidence of CMV disease than patients with a negative and an indeterminate result (6.4% vs 22.2% vs 58.3%, respectively; P < .001). Positive and negative predictive values of the assay for protection from CMV disease were 0.90 (95% confidence interval [CI], .74-.98) and 0.27 (95% CI, .18-.37), respectively. CONCLUSIONS: This assay may be useful to predict if patients are at low, intermediate, or high risk for the development of subsequent CMV disease after prophylaxis. CLINICAL TRIALS REGISTRATION: NCT00817908.
Resumo:
Development of Peyer's patches and lymph nodes requires the interaction between CD4+ CD3- IL-7Ralpha+ lymphoid-tissue inducer (LTi) and VCAM-1+ organizer cells. Here we showed that by promoting their survival, enhanced expression of interleukin-7 (IL-7) in transgenic mice resulted in accumulation of LTi cells. With increased IL-7 availability, de novo formation of VCAM-1+ Peyer's patch anlagen occurred along the entire fetal gut resulting in a 5-fold increase in Peyer's patch numbers. IL-7 overexpression also led to formation of multiple organized ectopic lymph nodes and cecal patches. After immunization, ectopic lymph nodes developed normal T cell-dependent B cell responses and germinal centers. Mice overexpressing IL-7 but lacking either RORgamma, a factor required for LTi cell generation, or lymphotoxin alpha1beta2 had neither Peyer's patches nor ectopic lymph nodes. Therefore, by controlling LTi cell numbers, IL-7 can regulate the formation of both normal and ectopic lymphoid organs.
Resumo:
The phosphoinositide 3-kinase (PI3K) family has multiple vascular functions, but the specific regulatory isoform supporting lymphangiogenesis remains unidentified. Here, we report that deletion of the Pik3r1 gene, encoding the regulatory subunits p85alpha, p55alpha, and p50alpha impairs lymphatic sprouting and maturation, and causes abnormal lymphatic morphology, without major impact on blood vessels. Pik3r1 deletion had the most severe consequences among gut and diaphragm lymphatics, which share the retroperitoneal anlage, initially suggesting that the Pik3r1 role in this vasculature is anlage-dependent. However, whereas lymphatic sprouting toward the diaphragm was arrested, lymphatics invaded the gut, where remodeling and valve formation were impaired. Thus, cell-origin fails to explain the phenotype. Only the gut showed lymphangiectasia, lymphatic up-regulation of the transforming growth factor-beta co-receptor endoglin, and reduced levels of mature vascular endothelial growth factor-C protein. Our data suggest that Pik3r1 isoforms are required for distinct steps of embryonic lymphangiogenesis in different organ microenvironments, whereas they are largely dispensable for hemangiogenesis.
Resumo:
Hypertension is highly prevalent in transplantation and affects all type of organs. With the introduction of calcineurin inhibitors as immunosuppressive drugs, acute allograft rejection episodes have been significantly reduced and hence patient and allograft survival rates have dramatically improved. However, cardiovascular complications have become an important cause of morbidity and mortality. Treating cardiovascular risk factors such as diabetes, dyslipidemia and hypertension seems obvious, however in this population, there is little evidence for specific blood pressure targets, or for the best strategy to achieve blood pressure control. The aim of this article is to review the epidemiology and physiopathology of hypertension in transplant recipients as well as its clinical management.
Resumo:
Cytomegalovirus (CMV) remains a major cause of morbidity in solid organ transplant patients. In order to reduce CMV morbidity, we designed a program of routine virological monitoring that included throat and urine CMV shell vial culture, along with peripheral blood leukocyte (PBL) shell vial quantitative culture for 12 weeks post-transplantation, as well as 8 weeks after treatment for acute rejection. The program also included preemptive ganciclovir treatment for those patients with the highest risk of developing CMV disease, i.e., with either high-level viremia (>10 infectious units [IU]/106 PBL) or low-level viremia (<10 IU/106 PBL) and either D+/R- CMV serostatus or treatment for graft rejection. During 1995-96, 90 solid organ transplant recipients (39 kidneys, 28 livers, and 23 hearts) were followed up. A total of 60 CMV infection episodes occurred in 45 patients. Seventeen episodes were symptomatic. Of 26 episodes managed according to the program, only 4 presented with CMV disease and none died. No patient treated preemptively for asymptomatic infection developed disease. In contrast, among 21 episodes managed in non-compliance with the program (i.e., the monitoring was not performed or preemptive treatment was not initiated despite a high risk of developing CMV disease), 12 episodes turned into symptomatic infection (P=0.0048 compared to patients treated preemptively), and 2 deaths possibly related to CMV were recorded. This difference could not be explained by an increased proportion of D+/R- patients or an increased incidence of rejection among patients with episodes treated in non-compliance with the program. Our data identify compliance with guidelines as an important factor in effectively reducing CMV morbidity through preemptive treatment, and suggest that the complexity of the preemptive approach may represent an important obstacle to the successful prevention of CMV morbidity by this approach in the regular healthcare setting.
Resumo:
Despite the substantial advances obtained in the treatment of localized malignancies, metastatic disease still lacks effective treatment and remains the primary cause of cancer mortality, including in breast cancer. Thus, in order to improve the survival of cancer patients it is necessary to effectively improve prevention or treatment of metastasis. To achieve this goal, complementary strategies can be envisaged: the first one is the eradication of established metastases by adding novel modalities to current treatments, such as immunotherapy or targeted therapies. A second one is to prevent tumor cell dissemination to secondary organs by targeting specific steps governing the metastatic cascade and organ-specific tropism. A third one is to block the colonization of secondary organs and subsequent cancer cell growth by impinging on the ability of disseminated cancer cells to adapt to the novel microenvironment. To obtain optimal results it might be necessary to combine these strategies. The development of therapeutic approaches aimed at preventing dissemination and organ colonization requires a deeper understanding of the specific genetic events occurring in cancer cells and of the host responses that co-operate to promote metastasis formation. Recent developments in the field disclosed novel mechanisms of metastasis. In particular the crosstalk between disseminated cancer cells and the host microenvironment is emerging as a critical determinant of metastasis. The identification of tissue-specific signals involved in metastatic progression will open the way to new therapeutic strategies. Here, we will review recent progress in the field, with particular emphasis on the mechanisms of organ specific dissemination and colonization of breast cancer.
Resumo:
ABSTRACT: BACKGROUND: Plants are sessile and therefore have to perceive and adjust to changes in their environment. The presence of neighbours leads to a competitive situation where resources and space will be limited. Complex adaptive responses to such situation are poorly understood at the molecular level. RESULTS: Using microarrays, we analysed whole-genome expression changes in Arabidopsis thaliana plants subjected to intraspecific competition. The leaf and root transcriptome was strongly altered by competition. Differentially expressed genes were enriched in genes involved in nutrient deficiency (mainly N, P, K), perception of light quality, and responses to abiotic and biotic stresses. Interestingly, performance of the generalist insect Spodoptera littoralis on densely grown plants was significantly reduced, suggesting that plants under competition display enhanced resistance to herbivory. CONCLUSIONS: This study provides a comprehensive list of genes whose expression is affected by intraspecific competition in Arabidopsis. The outcome is a unique response that involves genes related to light, nutrient deficiency, abiotic stress, and defence responses.
Resumo:
Following the seminal work on personal identity of Erikson, Marcia's identity status model has been one of the most enduring paradigms. The Ego Identity Process Questionnaire (EIPQ; Balistreri, Busch-Rossnagel, & Geissinger, 1995) is a widely used measure of identity status. The purpose of this study was to evaluate the factor structure and the reliability of a French version of the EIPQ. The hypothesized structures were not confirmed. In light of the failed attempts to validate the original version, an alternative short-form version of the EIPQ (EIPQ-SF), maintaining the integrity of the original model, was developed in one sample and cross-validated in another sample. Additionally, theoretically consistent associations between the EIPQ-SF dimensions and self-esteem confirmed convergent validity. Globally, the results indicated that the French short-version of the EIPQ might be a useful instrument for the assessment of the identity statuses in adolescence and emerging adulthood.
Resumo:
The size-advantage model (SAM) explains the temporal variation of energetic investment on reproductive structures (i.e. male and female gametes and reproductive organs) in long-lived hermaphroditic plants and animals. It proposes that an increase in the resources available to an organism induces a higher relative investment on the most energetically costly sexual structures. In plants, pollination interactions are known to play an important role in the evolution of floral features. Because the SAM directly concerns flower characters, pollinators are expected to have a strong influence on the application of the model. This hypothesis, however, has never been tested. Here, we investigate whether the identity and diversity of pollinators can be used as a proxy to predict the application of the SAM in exclusive zoophilous plants. We present a new approach to unravel the dynamics of the model and test it on several widespread Arum (Araceae) species. By identifying the species composition, abundance and spatial variation of arthropods trapped in inflorescences, we show that some species (i.e. A. cylindraceum and A. italicum) display a generalist reproductive strategy, relying on the exploitation of a low number of dipterans, in contrast to the pattern seen in the specialist A. maculatum (pollinated specifically by two fly species only). Based on the model presented here, the application of the SAM is predicted for the first two and not expected in the latter species, those predictions being further confirmed by allometric measures. We here demonstrate that while an increase in the female zone occurs in larger inflorescences of generalist species, this does not happen in species demonstrating specific pollinators. This is the first time that this theory is both proposed and empirically tested in zoophilous plants. Its overall biological importance is discussed through its application in other non-Arum systems.
Resumo:
False identity documents represent a serious threat through their production and use in organized crime and by terrorist organizations. The present-day fight against this criminal problem and threats to national security does not appropriately address the organized nature of this criminal activity, treating each fraudulent document on its own during investigation and the judicial process, which causes linkage blindness and restrains the analysis capacity. Given the drawbacks of this case-by-case approach, this article proposes an original model in which false identity documents are used to inform a systematic forensic intelligence process. The process aims to detect links, patterns, and tendencies among false identity documents in order to support strategic and tactical decision making, thus sustaining a proactive intelligence-led approach to fighting identity document fraud and the associated organized criminality. This article formalizes both the model and the process, using practical applications to illustrate its powerful capabilities. This model has a general application and can be transposed to other fields of forensic science facing similar difficulties.
Resumo:
Immune responses have the important function of host defense and protection against pathogens. However, the immune response also causes inflammation and host tissue injury, termed immunopathology. For example, hepatitis B and C virus infection in humans cause immunopathological sequel with destruction of liver cells by the host's own immune response. Similarly, after infection with lymphocytic choriomeningitis virus (LCMV) in mice, the adaptive immune response causes liver cell damage, choriomeningitis and destruction of lymphoid organ architecture. The immunopathological sequel during LCMV infection has been attributed to cytotoxic CD8(+) T cells. However, we now show that during LCMV infection CD4(+) T cells selectively induced the destruction of splenic marginal zone and caused liver cell damage with elevated serum alanin-transferase (ALT) levels. The destruction of the splenic marginal zone by CD4(+) T cells included the reduction of marginal zone B cells, marginal zone macrophages and marginal zone metallophilic macrophages. Functionally, this resulted in an impaired production of neutralizing antibodies against LCMV. Furthermore, CD4(+) T cells reduced B cells with an IgM(high)IgD(low) phenotype (transitional stage 1 and 2, marginal zone B cells), whereas other B cell subtypes such as follicular type 1 and 2 and germinal center/memory B cells were not affected. Adoptive transfer of CD4(+) T cells lacking different important effector cytokines and cytolytic pathways such as IFNγ, TNFα, perforin and Fas-FasL interaction did reveal that these cytolytic pathways are redundant in the induction of immunopathological sequel in spleen. In conclusion, our results define an important role of CD4(+) T cells in the induction of immunopathology in liver and spleen. This includes the CD4(+) T cell mediated destruction of the splenic marginal zone with consecutively impaired protective neutralizing antibody responses.
Resumo:
The production and use of false identity and travel documents in organized crime represent a serious and evolving threat. However, a case-by-case perspective, thus suffering from linkage blindness and a limited analysis capacity, essentially drives the present-day fight against this criminal problem. To assist in overcoming these limitations, a process model was developed using a forensic perspective. It guides the systematic analysis and management of seized false documents to generate forensic intelligence that supports strategic and tactical decision-making in an intelligence-led policing approach. The model is articulated on a three-level architecture that aims to assist in detecting and following-up on general trends, production methods and links between cases or series. Using analyses of a large dataset of counterfeit and forged identity and travel documents, it is possible to illustrate the model, its three levels and their contribution. Examples will point out how the proposed approach assists in detecting emerging trends, in evaluating the black market's degree of structure, in uncovering criminal networks, in monitoring the quality of false documents, and in identifying their weaknesses to orient the conception of more secured travel and identity documents. The process model proposed is thought to have a general application in forensic science and can readily be transposed to other fields of study.