206 resultados para enzymatic inhibition
Resumo:
The death receptor Fas is a member of the tumor necrosis factor receptor family; upon interaction with its ligand it efficiently activates caspases and induces apoptosis. Despite abundant Fas surface expression, however, Fas death-signals are frequently interrupted. Many viruses express antiapoptotic proteins, including caspase inhibitors, Bcl-2 homologues and death-effector-domain-containing proteins that are termed FLIPs (FLICE [Fas-associated death-domain-like IL-1beta-converting enzyme]-inhibitory proteins). Cellular homologues of these inhibitors have been identified. Cellular FLIPs structurally resemble caspase-8 except that they lack proteolytic activity. FLIPs are highly expressed in tumor cells, T lymphocytes and healthy, but not injured, myocytes; this suggests a critical role of FLIPs as endogenous modulators of apoptosis.
Resumo:
It is known that post-movement beta synchronization (PMBS) is involved both in active inhibition and in sensory reafferences processes. The aim of this study was examine the temporal and spatial dynamics of the PMBS involved during multi-limb coordination task. We investigated post-switching beta synchronization (assigned PMBS) using time-frequency and source estimations analyzes. Participants (n = 17) initiated an auditory-paced bimanual tapping. After a 1500 ms preparatory period, an imperative stimulus required to either selectively stop the left while maintaining the right unimanual tapping (Switch condition: SWIT) or to continue the bimanual tapping (Continue condition: CONT). PMBS significantly increased in SWIT compared to CONT with maximal difference within right central region in broad-band 14âeuro"30 Hz and within left central region in restricted-band 22âeuro"26 Hz. Source estimations localized these effects within right pre-frontal cortex and left parietal cortex, respectively. A negative correlation showed that participants with a low percentage of errors in SWIT had a large PMBS amplitude within right parietal and frontal cortices. This study shows for the first time simultaneous PMBS with distinct functions in different brain regions and frequency ranges. The left parietal PMBS restricted to 22âeuro"26 Hz could reflect the sensory reafferences of the right hand tapping disrupted by the switching. In contrast, the right pre-frontal PMBS in a broad-band 14âeuro"30 Hz is likely reflecting the active inhibition of the left hand stopped. Finally, correlations between behavioral performance and the magnitude of the PMBS suggest that beta oscillations can be viewed as a marker of successful active inhibition.
Resumo:
Purpose: Most of the patients with advanced colorectal cancer will develop liver metastasis, even after primary tumor resection. Although surgical resection remains the gold standard treatment of hepatic metastases, only few patients are eligible to curative resection. Radiofrequency ablation (RFA) is the most common curative alternative. Dbait are new molecules that inhibit DNA double-strand breaks repair. In vitro, Dbait has shown to increase cell death after hyperthermia. Here, we have assessed the combination of Dbait and RFA in the treatment of human colorectal cancer model xenografted in nude mice.Materials: 98 mice were flank-grafted with HT29 (human colon adenocarcinoma). When tumor reached 500 mm3, mice were sham treated (n=19), treated by Dbait via local injections (n=20), treated by RFA using an incomplete ablation scheme (n=20) or treated by combination of Dbait and RFA (n=39 separated in two Dbait regimens). After RFA, 39 mice were sacrificed for blinded pathological study, and 59 others were followed for survival analysis.Results: Mice treated by RFA-Dbait had significantly longer survival as compared to RFA alone (median survival: 56 vs 39 days, p<0.05) while RFA improved survival as compared to controls (median survival: 39 vs 28 days, p<0.05). Pathological studies of tumor slice have demonstrated significant decrease of tumor area and cancer cell viability in the RFA-Dbait group.Conclusions: While the implication of DNA repair activity in heat sensitivity remains unclear, our results show that the addition of Dbait to RFA enhances the antitumor response in this model and provide an experimental basis for the use of Dbait as an additional therapy to RFA.
Resumo:
Purpose: Consequently to the principle that photoreceptors have to be at a very precise development stage to be successfully transplanted (MacLaren 2006), we are trying to mimic this development stage in vitro using retinal stem cells. The latter one isolated from the newborn mouse retina, derived from the radial glia population, which were previously isolated and characterized in our laboratory. We developed a protocol to commit these cells to the photoreceptor fate, but even if the percentage of cells expressing photoreceptor markers is high (30%), the differentiation process is incomplete so far (Merhi-Soussi 2006). Methods: In order to ameliorate photoreceptor differentiation, we hypothesized that the Notch pathway may interfere with this process by either promoting glia commitment, or maintaining an undifferentiated state. We are thus using a gamma-secretase inhibitor (DAPT), which inhibits Notch receptor cleavage and thus Notch activation. DAPT was used either during the whole differentiation stimulation, or only during a restricted period in two various retinal stem cell lines (RSC AA and RSC MP1). Results: RT-PCR performed during cell proliferation, showed the same positive expression in both cell lines for the following genes: Math3, Six3, Hes1, NeuroD, Pax6 and Notch1. Additionally, Mash1, Hes5, Prox1, Crx and Otx2 were detected in both cell lines but with a stronger expression in RSC MP1. Opposite results were obtained for Chx10. Nrl, Peripherin/RDS, GFAP and Math5 were detected neither in RSC AA, nor in RSC MP1. The constant presence of DAPT i) leads to a 233% (RSC AA) or 900% (RSC MP1) increase in peripherin/RDS-positive (photoreceptor marker) cells, compared to controls (no DAPT, n=3, P<0.02) along with a 68% (RSC AA) or 80% (RSC MP1) decrease in GFAP- positive cells (n=3, P<0.04), ii) modifies the ratio between uni-/bi- (23%) and multi- (77%) polar peripherin/RDS-positive cells to 45% and 55%, respectively, for both cell lines and iii) reduces by 50% the total cell number during the whole differentiation process for both cell lines. Conclusions: We are now exploring whether this reduction in total cell number is due to inhibition of cell proliferation or to cell death and whether photoreceptor differentiation is promoted instead of glial induction. We also want to confirm the results obtained with DAPT with RSCs isolated from Notch1-loxP mice. Such protocol may help to better mimic photoreceptor development, but this needs to be confirmed by genomic and proteomic profile analyses.
Resumo:
Cancer pain significantly affects the quality of cancer patients, and current treatments for this pain are limited. C-Jun N-terminal kinase (JNK) has been implicated in tumor growth and neuropathic pain sensitization. We investigated the role of JNK in cancer pain and tumor growth in a skin cancer pain model. Injection of luciferase-transfected B16-Fluc melanoma cells into a hindpaw of mouse induced robust tumor growth, as indicated by increase in paw volume and fluorescence intensity. Pain hypersensitivity in this model developed rapidly (<5 days) and reached a peak in 2 weeks, and was characterized by mechanical allodynia and heat hyperalgesia. Tumor growth was associated with JNK activation in tumor mass, dorsal root ganglion (DRG), and spinal cord and a peripheral neuropathy, such as loss of nerve fibers in the hindpaw skin and induction of ATF-3 expression in DRG neurons. Repeated systemic injections of D-JNKI-1 (6 mg/kg, i.p.), a selective and cell-permeable peptide inhibitor of JNK, produced an accumulative inhibition of mechanical allodynia and heat hyperalgesia. A bolus spinal injection of D-JNKI-1 also inhibited mechanical allodynia. Further, JNK inhibition suppressed tumor growth in vivo and melanoma cell proliferation in vitro. In contrast, repeated injections of morphine (5 mg/kg), a commonly used analgesic for terminal cancer, produced analgesic tolerance after 1 day and did not inhibit tumor growth. Our data reveal a marked peripheral neuropathy in this skin cancer model and important roles of the JNK pathway in cancer pain development and tumor growth. JNK inhibitors such as D-JNKI-1 may be used to treat cancer pain.
Resumo:
Chronic intake of non steroidal anti-inflammatory drugs (NSAIDs) is associated with a reduced risk of developing gastrointestinal tumors, in particular colon cancer. Increasing evidence indicates that NSAID exert tumor-suppressive activity on pre-malignant lesions (polyps) in humans and on established experimental tumors in mice. Some of the tumor-suppressive effects of NSAIDs depend on the inhibition of cyclooxygenase-2 (COX-2), a key enzyme in the synthesis of prostaglandins and thromboxane, which is highly expressed in inflammation and cancer. Recent findings indicate that NSAIDs exert their anti-tumor effects by suppressing tumor angiogenesis. The availability of COX-2-specific NSAIDs opens the possibility of using this drug class as anti-angiogenic agents in combination with chemotheapy or radiotherapy for the treatment of human cancer. Here we will briefly review recent advances in the understanding of the mechanism by which NSAIDs suppress tumor angiogenesis and discuss their potential clinical application as anti-cancer agents.
Resumo:
The objective of the study was to evaluate the tissue oxygenation and hemodynamic effects of NOS inhibition in clinical severe septic shock. Eight patients with septic shock refractory to volume loading and high level of adrenergic support were prospectively enrolled in the study. Increasing doses of NOS inhibitors [N(G)-nitro-L-arginine-methyl ester (L-NAME) or N(G)-monomethyl-L-arginine (L-NMMA)] were administered as i.v. bolus until a peak effect = 10 mmHg on mean blood pressure was obtained or until side effects occurred. If deemed clinically appropriate, a continuous infusion of L-NAME was instituted and adrenergic support weaning attempted. The bolus administration of NOS inhibitors transiently increased mean blood pressure by 10 mm Hg in all patients. Seven out of eight patients received an L-NAME infusion, associated over 24 h with a progressive decline in cardiac index (P < 0.001) and an increase in systemic vascular resistance (P < 0.01). Partial or total adrenergic support weaning was rapidly possible in 6/8 patients. Oxygen transport decreased (P < 0.001), but oxygen consumption remained unchanged in those patients in whom it could be measured by indirect calorimetry (5/8). Blood lactate and the difference between tonometric gastric and arterial PCO2 remained unchanged. There were 4/8 ICU survivors. We conclude that nitric oxide synthase inhibition in severe septic shock was followed with a progressive correction of the vasoplegic hemodynamic disturbances with finally normalization of cardiac output and systemic vascular resistances without any demonstrable deterioration in tissue oxygenation.
Resumo:
Changes in the glycosylation pattern of cellular glycoproteins constitute a hallmark in human cancer and influence tumor progression, suggesting that inhibitors of selected glycosidases may control cancer progression. Following the studies on swainsonine, a natural inhibitor of Golgi alpha-mannosidase II, which highlighted the inhibition of cellular mannosidases as a potential innovative approach for the treatment of cancer, several dihydroxylated pyrrolidines and analogues were developed as new potent inhibitors of alpha-mannosidases II able to induce antiproliferative effects in human cancer cells.
Resumo:
It has not been well established whether the mechanisms participating in pH regulation in the anoxic-reoxygenated developing myocardium resemble those operating in the adult. We have specially examined the importance of Na+/H+ exchange (NHE) and HCO3-dependent transports in cardiac activity after changes in extracellular pH (pHo). Spontaneously contracting hearts isolated from 4-day-old chick embryos were submitted to single or repeated anoxia (1 min) followed by reoxygenation (10 min). The chronotropic, dromotropic and inotropic responses of the hearts were determined in standard HCO3- buffer at pHo 7.4 and at pHo 6.5 (hypercapnic acidosis). In distinct experiments, acidotic anoxia preceded reoxygenation at pHo 7.4. NHE was blocked with amiloride derivative HMA (1 micro mol/l) and HCO3-dependent transports were inactivated by replacement of HCO3 or blockade with stilbene derivative DIDS (100 micro mol/l). Anoxia caused transient tachycardia, depressed mechanical function and induced contracture. Reoxygenation temporarily provoked cardiac arrest, atrio-ventricular (AV) block, arrhythmias and depression of contractility. Addition of DIDS or substitution of HCO3 at pHo 7.4 had the same effects as acidosis per se, i.e. shortened contractile activity and increased incidence of arrhythmias during anoxia, prolonged cardioplegia and provoked arrhythmias at reoxygenation. Under anoxia at pHo 6.5/reoxygenation at pHo 7.4, cardioplegia, AV block and arrhythmias were all markedly prolonged. Interestingly, in the latter protocol, DIDS suppressed AV block and arrhythmias during reoxygenation, whereas HMA had no effect. Thus, intracellular pH regulation in the anoxic-reoxygenated embryonic heart appears to depend predominantly on HCO3 availability and transport. Furthermore, pharmacological inhibition of anion transport can protect against reoxygenation-induced dysfunction.
Resumo:
In shade-intolerant plants such as Arabidopsis, a reduction in the red/far-red (R/FR) ratio, indicative of competition from other plants, triggers a suite of responses known as the shade avoidance syndrome (SAS). The phytochrome photoreceptors measure the R/FR ratio and control the SAS. The phytochrome-interacting factors 4 and 5 (PIF4 and PIF5) are stabilized in the shade and are required for a full SAS, whereas the related bHLH factor HFR1 (long hypocotyl in FR light) is transcriptionally induced by shade and inhibits this response. Here we show that HFR1 interacts with PIF4 and PIF5 and limits their capacity to induce the expression of shade marker genes and to promote elongation growth. HFR1 directly inhibits these PIFs by forming non-DNA-binding heterodimers with PIF4 and PIF5. Our data indicate that PIF4 and PIF5 promote SAS by directly binding to G-boxes present in the promoter of shade marker genes, but their action is limited later in the shade when HFR1 accumulates and forms non-DNA-binding heterodimers. This negative feedback loop is important to limit the response of plants to shade.
Resumo:
The priming agent β-aminobutyric acid (BABA) is known to enhance Arabidopsis resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000 by potentiating salicylic acid (SA) defence signalling, notably PR1 expression. The molecular mechanisms underlying this phenomenon remain unknown. A genome-wide microarray analysis of BABA priming during Pst DC3000 infection revealed direct and primed up-regulation of genes that are responsive to SA, the SA analogue benzothiadiazole and pathogens. In addition, BABA was found to inhibit the Arabidopsis response to the bacterial effector coronatine (COR). COR is known to promote bacterial virulence by inducing the jasmonic acid (JA) response to antagonize SA signalling activation. BABA specifically repressed the JA response induced by COR without affecting other plant JA responses. This repression was largely SA-independent, suggesting that it is not caused by negative cross-talk between SA and JA signalling cascades. Treatment with relatively high concentrations of purified COR counteracted BABA inhibition. Under these conditions, BABA failed to protect Arabidopsis against Pst DC3000. BABA did not induce priming and resistance in plants inoculated with a COR-deficient strain of Pst DC3000 or in the COR-insensitive mutant coi1-16. In addition, BABA blocked the COR-dependent re-opening of stomata during Pst DC3000 infection. Our data suggest that BABA primes for enhanced resistance to Pst DC3000 by interfering with the bacterial suppression of Arabidopsis SA-dependent defences. This study also suggests the existence of a signalling node that distinguishes COR from other JA responses.
Resumo:
BRAF inhibitory therapy is the mainstream treatment for BRAF mutant advanced melanoma. However vemurafenib, a type I mutant BRAF V600 inhibitor, induces an array of proliferative skin disorders from keratosis pilaris-like and keratoacanthoma-like lesions to locally aggressive cutaneous squamous cell carcinoma (cuSCC). Dual BRAF/MEK inhibition is known to lower the incidence of such manifestations, but it is not known whether it can counteract established lesions. Here we show, for the first time, a dramatic response and a restitution ad integro upon dual inhibition of a widespread proliferative affection induced by BRAF monotherapy. A 75-year-old woman was diagnosed with a BRAF V600E mutated metastatic melanoma. Following dacarbazine (DTIC) and ipilimumab, the patient was started on 960 mg twice daily vemurafenib (Zelboraf), which resulted in complete response, but the patient also developed grade IV skin toxicity. Despite dose-reduction to 720 mg twice daily the side effects persisted. We hypothesized that a switch to double inhibition of the mitogen-activated protein kinase pathway with dabrafenib and trametinib could lead to improvement of the skin lesions, while preserving tumor control. The patient was closely followed for changes in skin lesions. We witnessed a rapid regression followed by complete disappearance of all side effects of vemurafenib except for grade I fatigue. The biopsied skin lesions show regression of established keratoacanthoma-like lesions with signs of apoptosis. Switching from the current standard of care vemurafenib therapy to the double BRAF/MEK inhibition in BRAF mutant melanoma patients results in rapid disappearance of established proliferative skin disorders.