212 resultados para dispersal guilds


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND AIMS: The study of local adaptation in plant reproductive traits has received substantial attention in short-lived species, but studies conducted on forest trees are scarce. This lack of research on long-lived species represents an important gap in our knowledge, because inferences about selection on the reproduction and life history of short-lived species cannot necessarily be extrapolated to trees. This study considers whether the size for first reproduction is locally adapted across a broad geographical range of the Mediterranean conifer species Pinus pinaster. In particular, the study investigates whether this monoecious species varies genetically among populations in terms of whether individuals start to reproduce through their male function, their female function or both sexual functions simultaneously. Whether differences among populations could be attributed to local adaptation across a climatic gradient is then considered. METHODS: Male and female reproduction and growth were measured during early stages of sexual maturity of a P. pinaster common garden comprising 23 populations sampled across the species range. Generalized linear mixed models were used to assess genetic variability of early reproductive life-history traits. Environmental correlations with reproductive life-history traits were tested after controlling for neutral genetic structure provided by 12 nuclear simple sequence repeat markers. KEY RESULTS: Trees tended to reproduce first through their male function, at a size (height) that varied little among source populations. The transition to female reproduction was slower, showed higher levels of variability and was negatively correlated with vegetative growth traits. Several female reproductive traits were correlated with a gradient of growth conditions, even after accounting for neutral genetic structure, with populations from more unfavourable sites tending to commence female reproduction at a lower individual size. CONCLUSIONS: The study represents the first report of genetic variability among populations for differences in the threshold size for first reproduction between male and female sexual functions in a tree species. The relatively uniform size at which individuals begin reproducing through their male function probably represents the fact that pollen dispersal is also relatively invariant among sites. However, the genetic variability in the timing of female reproduction probably reflects environment-dependent costs of cone production. The results also suggest that early sex allocation in this species might evolve under constraints that do not apply to other conifers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The loss of biodiversity has become a matter of urgent concern and a better understanding of local drivers is crucial for conservation. Although environmental heterogeneity is recognized as an important determinant of biodiversity, this has rarely been tested using field data at management scale. We propose and provide evidence for the simple hypothesis that local species diversity is related to spatial environmental heterogeneity. Species partition the environment into habitats. Biodiversity is therefore expected to be influenced by two aspects of spatial heterogeneity: 1) the variability of environmental conditions, which will affect the number of types of habitat, and 2) the spatial configuration of habitats, which will affect the rates of ecological processes, such as dispersal or competition. Earlier, simulation experiments predicted that both aspects of heterogeneity will influence plant species richness at a particular site. For the first time, these predictions were tested for plant communities using field data, which we collected in a wooded pasture in the Swiss Jura mountains using a four-level hierarchical sampling design. Richness generally increased with increasing environmental variability and "roughness" (i.e. decreasing spatial aggregation). Effects occurred at all scales, but the nature of the effect changed with scale, suggesting a change in the underlying mechanisms, which will need to be taken into account if scaling up to larger landscapes. Although we found significant effects of environmental heterogeneity, other factors such as history could also be important determinants. If a relationship between environmental heterogeneity and species richness can be shown to be general, recently available high-resolution environmental data can be used to complement the assessment of patterns of local richness and improve the prediction of the effects of land use change based on mean site conditions or land use history.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The distribution of mitochondrial control region-sequence polymorphism was investigated in 15 populations of Crocidura russula along an altitudinal gradient in western Switzerland. High-altitude populations are smaller, sparser and appear to undergo frequent bottlenecks. Accordingly, they showed a loss of rare haplotypes, but unexpectedly, were less differentiated than lowland populations. Furthermore, the major haplotypes segregated significantly with altitude. The results were inconsistent with a simple model of drift and dispersal. They suggested instead a role for historical patterns of colonization, or, alternatively, present-day selective forces acting on one of the mitochondrial genes involved in metabolic pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wolves in Italy strongly declined in the past and were confined south of the Alps since the turn of the last century, reduced in the 1970s to approximately 100 individuals surviving in two fragmented subpopulations in the central-southern Apennines. The Italian wolves are presently expanding in the Apennines, and started to recolonize the western Alps in Italy, France and Switzerland about 16 years ago. In this study, we used a population genetic approach to elucidate some aspects of the wolf recolonization process. DNA extracted from 3068 tissue and scat samples collected in the Apennines (the source populations) and in the Alps (the colony), were genotyped at 12 microsatellite loci aiming to assess (i) the strength of the bottleneck and founder effects during the onset of colonization; (ii) the rates of gene flow between source and colony; and (iii) the minimum number of colonizers that are needed to explain the genetic variability observed in the colony. We identified a total of 435 distinct wolf genotypes, which showed that wolves in the Alps: (i) have significantly lower genetic diversity (heterozygosity, allelic richness, number of private alleles) than wolves in the Apennines; (ii) are genetically distinct using pairwise F(ST) values, population assignment test and Bayesian clustering; (iii) are not in genetic equilibrium (significant bottleneck test). Spatial autocorrelations are significant among samples separated up to c. 230 km, roughly correspondent to the apparent gap in permanent wolf presence between the Alps and north Apennines. The estimated number of first-generation migrants indicates that migration has been unidirectional and male-biased, from the Apennines to the Alps, and that wolves in southern Italy did not contribute to the Alpine population. These results suggest that: (i) the Alps were colonized by a few long-range migrating wolves originating in the north Apennine subpopulation; (ii) during the colonization process there has been a moderate bottleneck; and (iii) gene flow between sources and colonies was moderate (corresponding to 1.25-2.50 wolves per generation), despite high potential for dispersal. Bottleneck simulations showed that a total of c. 8-16 effective founders are needed to explain the genetic diversity observed in the Alps. Levels of genetic diversity in the expanding Alpine wolf population, and the permanence of genetic structuring, will depend on the future rates of gene flow among distinct wolf subpopulation fragments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coevolution is among the main forces shaping the biodiversity on Earth. In Eurasia, one of the best-known plant-insect interactions showing highly coevolved features involves the fly genus Chiastocheta and its host-plant Trollius. Although this system has been widely studied from an ecological point of view, the phylogenetic relationships and biogeographic history of the flies have remained little investigated. In this integrative study, we aim to test the monophyly of the five Chiastocheta eco-morphological groups, defined by Pellmyr in 1992, by inferring a mitochondrial phylogeny. We further apply a new approach to assess the effect of (i) different molecular substitution rates and (ii) phylogenetic uncertainty on the inference of the spatio-temporal evolution of the group. From a taxonomic point of view, we demonstrate that only two of Pellmyr's groups (rotundiventris and dentifera) are phylogenetically supported, the other species appearing para- or polyphyletic. We also identify the position of C. lophota, which was not included in previous surveys. From a spatio-temporal perspective, we show that the genus arose during the Pliocene in Europe. Our results also indicate that at least four large-scale dispersal events are required to explain the current distribution of Chiastocheta. Moreover, each dispersal to or from Asia is associated with a host-shift and seems to correspond to an increase in speciation rates. Finally, we highlight the correlation between diversification and climatic fluctuations, which indicate that the cycles of global cooling over the last million years had an influence on the radiation of the group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantitative estimates of the range loss of mountain plants under climate change have so far mostly relied on static geographical projections of species' habitat shifts(1-3). Here, we use a hybrid model(4) that combines such projections with simulations of demography and seed dispersal to forecast the climate-driven spatio-temporal dynamics of 150 high-mountain plant species across the European Alps. This model predicts average range size reductions of 44-50% by the end of the twenty-first century, which is similar to projections from the most 'optimistic' static model (49%). However, the hybrid model also indicates that population dynamics will lag behind climatic trends and that an average of 40% of the range still occupied at the end of the twenty-first century will have become climatically unsuitable for the respective species, creating an extinction debt(5,6). Alarmingly, species endemic to the Alps seem to face the highest range losses. These results caution against optimistic conclusions from moderate range size reductions observed during the twenty-first century as they are likely to belie more severe longer-term effects of climate warming on mountain plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

European island shrews are either relicts of the endemic Pleistocene fauna, e.g.,. Crocidura zimmermanni, or were introduced from continental source populations. In order to clarify the taxonomic status and the origin of the two shrew species from the Canary islands, a 981bp fragment of cytochrome b gene was investigated in all European Crocidura species and compared with the Canary shrew (Crocidura canariensis) and the Osorio shrew (Crocidura osorio). The first shares its karyotype with the Sicilian shrew Crocidura sicula (2N=36), the second with the Greater white-toothed shrew Crocidura russula (2N=42), suggesting possible sister species relationships. Results confirm the monophyly of taxa sharing the same karyotype. Genetic distances between C. sicula and C. canariensis suggest a separation since 5 Myr. The first was probably isolated from the North African ancestor after the Messinian desiccation; the second arrived on the Canary islands by natural jump dispersal. Within the 2N=42 cluster, a first split separated an Eastern line (Tunisia) from a western line (Morocco/Europe) of C. russula. C. osorio clusters together with C. russula from Spain, indicating conspecificy. This suggests a recent introduction from Spain by human.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

*This study reconstructs the phylogeography of Aegilops geniculata, an allotetraploid relative of wheat, to discuss the impact of past climate changes and recent human activities (e.g. the early expansion of agriculture) on the genetic diversity of ruderal plant species. *We combined chloroplast DNA (cpDNA) sequencing, analysed using statistical parsimony network, with nonhierarchical K-means clustering of amplified fragment length polymorphism (AFLP) genotyping, to unravel patterns of genetic structure across the native range of Ae. geniculata. The AFLP dataset was further explored by measurement of the regional genetic diversity and the detection of isolation by distance patterns. *Both cpDNA and AFLP suggest an eastern Mediterranean origin of Ae. geniculata. Two lineages have spread independently over northern and southern Mediterranean areas. Northern populations show low genetic diversity but strong phylogeographical structure among the main peninsulas, indicating a major influence of glacial cycles. By contrast, low genetic structuring and a high genetic diversity are detected in southern Mediterranean populations. Finally, we highlight human-mediated dispersal resulting in substantial introgression between resident and migrant populations. *We have shown that the evolutionary trajectories of ruderal plants can be similar to those of wild species, but are interfered by human activities, promoting range expansions through increased long-distance dispersal and the creation of suitable habitats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigates the role of human agency in the gene flow and geographical distribution of the Australian baobab, Adansonia gregorii. The genus Adansonia is a charismatic tree endemic to Africa, Madagascar, and northwest Australia that has long been valued by humans for its multiple uses. The distribution of genetic variation in baobabs in Africa has been partially attributed to human-mediated dispersal over millennia, but this relationship has never been investigated for the Australian species. We combined genetic and linguistic data to analyse geographic patterns of gene flow and movement of word-forms for A. gregorii in the Aboriginal languages of northwest Australia. Comprehensive assessment of genetic diversity showed weak geographic structure and high gene flow. Of potential dispersal vectors, humans were identified as most likely to have enabled gene flow across biogeographic barriers in northwest Australia. Genetic-linguistic analysis demonstrated congruence of gene flow patterns and directional movement of Aboriginal loanwords for A. gregorii. These findings, along with previous archaeobotanical evidence from the Late Pleistocene and Holocene, suggest that ancient humans significantly influenced the geographic distribution of Adansonia in northwest Australia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Information about the population genetic structures of parasites is important for an understanding of parasite transmission pathways and ultimately the co-evolution with their hosts. If parasites cannot disperse independently of their hosts, a parasite's population structure will depend upon the host's spatial distribution. Geographical barriers affecting host dispersal can therefore lead to structured parasite populations. However, how the host's social system affects the genetic structure of parasite populations is largely unknown. We used mitochondrial DNA (mtDNA) to describe the spatio-temporal population structure of a contact-transmitted parasitic wing mite (Spinturnix bechsteini) and compared it to that of its social host, the Bechstein's bat (Myotis bechsteinii). We observed no genetic differentiation between mites living on different bats within a colony. This suggests that mites can move freely among bats of the same colony. As expected in case of restricted inter-colony dispersal, we observed a strong genetic differentiation of mites among demographically isolated bat colonies. In contrast, we found a strong genetic turnover between years when we investigated the temporal variation of mite haplotypes within colonies. This can be explained with mite dispersal occuring between colonies and bottlenecks of mite populations within colonies. The observed absence of isolation by distance could be the result from genetic drift and/or from mites dispersing even between remote bat colonies, whose members may meet at mating sites in autumn or in hibernacula in winter. Our data show that the population structure of this parasitic wing mite is influenced by its own demography and the peculiar social system of its bat host.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the population genetic structure of the Maghrebian bat, Myotis punicus, between the mainland and islands to assess the island colonization pattern and current gene flow between nearby islands and within the mainland. Location North Africa and the Mediterranean islands of Corsica and Sardinia. Methods We sequenced part of the control region (HVII) of 79 bats across 11 colonies. The phylogeographical pattern was assessed by analysing molecular diversity indices, examining differentiation among populations and estimating divergence time. In addition, we genotyped 182 bats across 10 colonies at seven microsatellite loci. We used analysis of molecular variance and a Bayesian approach to infer nuclear population structure. Finally, we estimated sex-specific dispersal between Corsica and Sardinia. Results Mitochondrial analyses indicated that colonies between Corsica, Sardinia and North Africa are highly differentiated. Within islands there was no difference between colonies, while at the continental level Moroccan and Tunisian populations were highly differentiated. Analyses with seven microsatellite loci showed a similar pattern. The sole difference was the lack of nuclear differentiation between populations in North Africa, suggesting a male-biased dispersal over the continental area. The divergence time of Sardinian and Corsican populations was estimated to date back to the early and mid-Pleistocene. Main conclusions Island colonization by the Maghrebian bats seems to have occurred in a stepping-stone manner and certainly pre-dated human colonization. Currently, open water seems to prevent exchange of bats between the two islands, despite their ability to fly and the narrowness of the strait of Bonifacio. Corsican and Sardinian populations are thus currently isolated from any continental gene pool and must therefore be considered as different evolutionarily significant units (ESU).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

How phenomena like helping, dispersal, or the sex ratio evolve depends critically on demographic and life-history factors. One phenotype that is of particular interest to biologists is genomic imprinting, which results in parent-of-origin-specific gene expression and thus deviates from the predictions of Mendel's rules. The most prominent explanation for the evolution of genomic imprinting, the kinship theory, originally specified that multiple paternity can cause the evolution of imprinting when offspring affect maternal resource provisioning. Most models of the kinship theory do not detail how population subdivision, demography, and life history affect the evolution of imprinting. In this work, we embed the classic kinship theory within an island model of population structure and allow for diverse demographic and life-history features to affect the direction of selection on imprinting. We find that population structure does not change how multiple paternity affects the evolution of imprinting under the classic kinship theory. However, if the degree of multiple paternity is not too large, we find that sex-specific migration and survival and generation overlap are the primary factors determining which allele is silenced. This indicates that imprinting can evolve purely as a result of sex-related asymmetries in the demographic structure or life history of a species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BackgroundGenetic, phenotypic and ecological divergence within a lineage is the result of past and ongoing evolutionary processes, which lead ultimately to diversification and speciation. Integrative analyses allow linking diversification to geological, climatic, and ecological events, and thus disentangling the relative importance of different evolutionary drivers in generating and maintaining current species richness.ResultsHere, we use phylogenetic, phenotypic, geographic, and environmental data to investigate diversification in the Spanish sand racer (Psammodromus hispanicus). Phylogenetic, molecular clock dating, and phenotypic analyses show that P. hispanicus consists of three lineages. One lineage from Western Spain diverged 8.3 (2.9-14.7) Mya from the ancestor of Psammodromus hispanicus edwardsianus and P. hispanicus hispanicus Central lineage. The latter diverged 4.8 (1.5-8.7) Mya. Molecular clock dating, together with population genetic analyses, indicate that the three lineages experienced northward range expansions from southern Iberian refugia during Pleistocene glacial periods. Ecological niche modelling shows that suitable habitat of the Western lineage and P. h. edwardsianus overlap over vast areas, but that a barrier may hinder dispersal and genetic mixing of populations of both lineages. P. h. hispanicus Central lineage inhabits an ecological niche that overlaps marginally with the other two lineages.ConclusionsOur results provide evidence for divergence in allopatry and niche conservatism between the Western lineage and the ancestor of P. h. edwardsianus and P. h. hispanicus Central lineage, whereas they suggest that niche divergence is involved in the origin of the latter two lineages. Both processes were temporally separated and may be responsible for the here documented genetic and phenotypic diversity of P. hispanicus. The temporal pattern is in line with those proposed for other animal lineages. It suggests that geographic isolation and vicariance played an important role in the early diversification of the group, and that lineage diversification was further amplified through ecological divergence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ecological relevance of behavioural syndromes is little studied in cooperative breeding systems where it is assumed that the behavioural type might influence individual decisions on helping and dispersal (e.g. shy, nonaggressive and nonexplorative individuals remain philopatric and helpful, whereas bold, aggressive, explorative individuals compete for vacancies outside their group and disperse). We measured the behavioural type of 19 subordinates in the cooperatively breeding cichlid fish Neolamprologus pulcher in their natural environment by quantifying six behavioural traits up to four times ('trials') in three different contexts, by presenting them with a conspecific intruder, a predator or nothing inside a tube. We found only moderate within-context repeatability (intraclass correlation coefficients) of the focal individual's behaviour, except for attacking either the conspecific or the predator inside the tube. The focal individual's attack rate of the tube was also positively affected by its group size. Averaging traits per context removed the between-trial variation, and consequently the across-context repeatability was very high for all six traits, except for territory maintenance. Trait values depended significantly on the context, except for territory defence. Consequently, individuals could be classified into different behavioural types based on their reaction towards the tube, but surprisingly, and opposite to laboratory studies in this species, ranging propensity and territory maintenance were not included in this behavioural syndrome. We suggest that more studies are needed to compare standardized focal personality tests (e.g. exploration propensity) with actual behaviour observed in nature (e.g. ranging and dispersal).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary Among ants, wood ants are probably the most fascinating and studied species in temperate European forests. Unfortunately, due to several threats they are nowadays registered in red lists. Recent studies made in the Swiss Jura Mountains ended up in the description of a new sympatric sibling species of Formica lugubris (i.e. Formica paralugubris Seifert 1996). Because of this confusion the biology of F. lugubris is incomplete. Due to the extreme difficulties to distinguish morphologically F. lugubris from F. paralugubris we studied their cuticular hydrocarbons profiles. Irrespective of their geographic origin, we observed quantitative discrimination between species within each caste (workers, males and gynes =young alate female). Moreover, using a behavioural taxonomic approach (i.e. the pupa-carrying test) we showed that ants preferred conspecific worker pupae to those of the sibling species. These first results allowed us to consider the two species as two separate taxonomic units. To understand their coexistence, habitat distribution models were fitted with GIS predictors and factors known to influence wood ant distribution. In the Jura Mountains, although the two species share very similar habitats, they are spatially segregated. F. lugubris occurs more frequently at woodland borders than in forest interiors. We demonstrated with genetic and field data that Formica lugubris displays two different social forms in close proximity in alpine zone (e.g. unmanaged forests of the Swiss National Park). We discovered populations mostly monogynous to weakly polygynous (i.e. one to a few egg laying queens per colony) and monodomous (i.e. one nest per colony), and polygynous/polydomous populations (new nests being founded by colony budding). It is generally admitted that monogyne species disperse well in order to find suitable habitat to found new colonies whereas polygyne species have restricted dispersal and local mating within the nest. In order to compare reproductive strategies of F. lugubris and F. paralugubris (i.e. matings and dealation process) we conducted experiments with sexuals. F, lugubris gynes from monogynous/monodomous populations do not show a local strategy like the obligately polygynous F. paralugubris (i.e. early dealation even without mating, insemination without flight activity and low fat reserve). They always keep their wings, do not mate when not able to fly and have high amount of fat content revealing high survival capacities. On the other side, F, lugubris gynes from polygynous/polydomous populations have lower lipid reserves and displayed a reproductive behaviour close to the F. para lugubris one. After dispersal, wood ant gynes can either start new societies by temporary social parasitism of another species (i.e. subgenus Serviformica) or be adopted intraspecifically in an existing nest. In F. lugubris, we demonstrated that gynes from monogynous/monodomous colonies showed a high success for temporary social parasitism compare to the lower success of gynes from polygynous/polydomous colonies. However, physiological analyses suggested that only gynes from monogynous/ monodomous populations can efficiently disperse and found new nest by temporary social parasitism. Intraspecifically, gynes were accepted to a high degree in polygynous nest and in monogynous nests as long as these nests contained sexuals. In conclusion, Formica lugubris displays a social and dispersal polymorphism (mixed mating and founding system) representing a behavioural plasticity in relation to environmental and ecological conditions. Therefore, conservation measures directed toward this species should try to maintain a maximum of diversity at the habitat level. Résumé Les fourmis des bois sont probablement parmi les espèces de fourmis les plus fascinantes et les plus étudiées des forêts tempérées Européennes. Actuellement, du fait de différentes menaces, elles figurent malheureusement sur listes rouges. Plusieurs études menées au sein du Jura Suisse ont abouti à la description d'une nouvelle espèce jumelle et sympatrique de Formica lugubris (F. para- lugubris Seifert 1996). A cause de cette confusion la biologie de F lugubris est lacunaire. La distinction morphologique de F. lugubris et de F. para lugubris est si difficile que nous avons étudié leurs hydrocarbures cuticulaires. Indépendamment de l'origine géographique, nous avons observé une discrimination quantitative entre les espèces au sein de chaque caste (ouvrières, mâles et jeunes femelles ailées). De plus, à l'aide d'une approche taxonomique comportementale (le test de transport de cocons) nous avons montré que les fourmis préfèrent des cocons d'ouvrières conspécifiques à ceux de l'espèce jumelle. Ces premiers résultats nous permettent de considérer ces deux espèces comme deux unités taxonomiques distinctes et valables. Afin de comprendre leur coexistence, des modèles mathématiques ont été développés avec des données SIG et des facteurs écologiques influençant la répartition des fournis des bois. Dans le Jura, même si elles partagent des habitats fortement similaires, les deux espèces n'occupent pas les mêmes secteurs. F. lugubris est plus fréquente en lisière forestière plutôt qu'en pleine forêt. Nous avons démontré grâce à des données génétiques et de terrain que F. lugubris présente deux formes sociales au sein de la zone alpine (forêts protégées du Parc National Suisse). D'autre part, nous avons découvert des populations monogynes à faiblement polygynes (une à quelques reines pondeuses par colonie) et monodomes (colonies composées d'une seule fourmilière), et des populations polygynes/polydomes (les nouveaux nids étant produit par bourgeonnement). Généralement, les espèces monogynes dispersent sur de grandes distances et peuvent coloniser des habitats favorables à la fondation de nouvelles colonies alors que les espèces polygynes possèdent une dispersion limitée avec des accouplements à l'intérieur des nids. Afin de comparer les stratégies de reproduction de F. lugubris et de F. paralugubris (accouplements et perte des ailes) nous avons mené des expériences avec les sexués. Les jeunes femelles ailées de F. lugubris issues de populations monogynes/monodomes ne présentent pas de stratégie locale comparée à l'espèce obligatoirement polygyne F paralugubris (perte des ailes précoce même si il n'y a pas eu accouplement, insémination possible sans avoir volé activement et faibles réserves de graisse). Elles conservent toujours leurs ailes, ne s'accouplent pas lorsqu'elles sont empêchées de voler et possèdent de grandes quantités de graisse révélant de fortes capacités de survie. D'autre part, les jeunes femelles ailées de F. lugubris provenant de populations polygynes/polydomes ont peu de réserves lipidiques et ont un comportement de reproduction proche de celles de F. paralugubris. Après leur dispersion, les jeunes sexués femelles de fourmis des bois peuvent soit fonder une nouvelle société par parasitisme social temporaire d'un nid d'une autre espèce (sous-genre Serviformica) soit être adoptées dans un nid déjà existant de leur propre espèce. Chez F. lugubris, nous avons pu démontrer que les jeunes sexués femelles de colonies monogynes/monodomes présentent un succès élevé au parasitisme sociale temporaire en comparaison au plus faible succès obtenu avec des sexués provenant de colonies polygynes/polydomes. Cependant, les données physiologiques suggèrent que seules les jeunes sexués femelles de populations mono-gynes/monodomes peuvent disperser efficacement et fonder un nouveau nid par parasitisme social temporaire. Au niveau intraspécifique, les jeunes femelles sont acceptées à un taux élevé dans les nids polygynes mais aussi dans les nids monogynes tant que ces nids possèdent encore de jeunes sexués. En conclusion, F. lugubris est caractérisée par un polymorphisme dans ses structures sociales et ses stratégies de dispersion (système mixte d'accouplement et de fondation) ce qui représente une forte plasticité comportementale en relation avec les conditions environnementales et écologiques. Par conséquent, les mesures de conservation de cette espèce devraient s'attacher à maintenir un maximum de diversité au niveau des habitats.