153 resultados para collection problems
Resumo:
In the recent years, many protocols aimed at reproducibly sequencing reduced-genome subsets in non-model organisms have been published. Among them, RAD-sequencing is one of the most widely used. It relies on digesting DNA with specific restriction enzymes and performing size selection on the resulting fragments. Despite its acknowledged utility, this method is of limited use with degraded DNA samples, such as those isolated from museum specimens, as these samples are less likely to harbor fragments long enough to comprise two restriction sites making possible ligation of the adapter sequences (in the case of double-digest RAD) or performing size selection of the resulting fragments (in the case of single-digest RAD). Here, we address these limitations by presenting a novel method called hybridization RAD (hyRAD). In this approach, biotinylated RAD fragments, covering a random fraction of the genome, are used as baits for capturing homologous fragments from genomic shotgun sequencing libraries. This simple and cost-effective approach allows sequencing of orthologous loci even from highly degraded DNA samples, opening new avenues of research in the field of museum genomics. Not relying on the restriction site presence, it improves among-sample loci coverage. In a trial study, hyRAD allowed us to obtain a large set of orthologous loci from fresh and museum samples from a non-model butterfly species, with a high proportion of single nucleotide polymorphisms present in all eight analyzed specimens, including 58-year-old museum samples. The utility of the method was further validated using 49 museum and fresh samples of a Palearctic grasshopper species for which the spatial genetic structure was previously assessed using mtDNA amplicons. The application of the method is eventually discussed in a wider context. As it does not rely on the restriction site presence, it is therefore not sensitive to among-sample loci polymorphisms in the restriction sites that usually causes loci dropout. This should enable the application of hyRAD to analyses at broader evolutionary scales.
Resumo:
Early warning systems (EWSs) rely on the capacity to forecast a dangerous event with a certain amount of advance by defining warning criteria on which the safety of the population will depend. Monitoring of landslides is facilitated by new technologies, decreasing prices and easier data processing. At the same time, predicting the onset of a rapid failure or the sudden transition from slow to rapid failure and subsequent collapse, and its consequences is challenging for scientists that must deal with uncertainties and have limited tools to do so. Furthermore, EWS and warning criteria are becoming more and more a subject of concern between technical experts, researchers, stakeholders and decision makers responsible for the activation, enforcement and approval of civil protection actions. EWSs imply also a sharing of responsibilities which is often averted by technical staff, managers of technical offices and governing institutions. We organized the First International Workshop on Warning Criteria for Active Slides (IWWCAS) to promote sharing and networking among members from specialized institutions and relevant experts of EWS. In this paper, we summarize the event to stimulate discussion and collaboration between organizations dealing with the complex task of managing hazard and risk related to active slides.