221 resultados para antifungal drug resistance
Resumo:
Antiepileptic drugs allow controlling seizures in 70% of patients. For the others, a presurgical work-up should be undertaken, especially if a focal seizure origin is suspected; however, only a fraction of pharmacoresistant patients will be offered resective (curative) surgery. In the last 15 years, several palliative therapies using extra- or intracranial electrical stimulations have been developed. This article presents the vagal nerve stimulation, the deep brain stimulation (targeting the mesiotemporal region or the thalamus), and the cortical stimulation "on demand". All show an overall long-term responder rate between 30-50%, but less than 5% of patients becoming seizure free. It is to hope that a better understanding of epileptogenic mechanisms and of the implicated neuronal networks will lead to an improvement of these proportions.
Resumo:
As the mortality associated with invasive Candida infections remains high, it is important to make optimal use of available diagnostic tools to initiate antifungal therapy as early as possible and to select the most appropriate antifungal drug. A panel of experts of the European Fungal Infection Study Group (EFISG) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) undertook a data review and compiled guidelines for the clinical utility and accuracy of different diagnostic tests and procedures for detection of Candida infections. Recommendations about the microbiological investigation and detection of candidaemia, invasive candidiasis, chronic disseminated candidiasis, and oropharyngeal, oesophageal, and vaginal candidiasis were included. In addition, remarks about antifungal susceptibility testing and therapeutic drug monitoring were made.
Resumo:
To explore the discriminatory power of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for detecting subtle differences in isogenic isolates, we tested isogenic strains of Staphylococcus aureus differing in their expression of resistance to methicillin or teicoplanin. More important changes in MALDI-TOF MS spectra were found with strains differing in methicillin than in teicoplanin resistance. In comparison, very minor or no changes were recorded in pulsed-field gel electrophoresis profiles or peptidoglycan muropeptide digest patterns of these strains, respectively. MALDI-TOF MS might be useful to detect subtle strain-specific differences in ionizable components released from bacterial surfaces and not from their peptidoglycan network.
Resumo:
The activity of garenoxacin was investigated in rats with experimental endocarditis due to staphylococci and viridans group streptococci (VGS). The staphylococci tested comprised one ciprofloxacin-susceptible and methicillin-susceptible Staphylococcus aureus (MSSA) isolate (isolate 1112), one ciprofloxacin-susceptible but methicillin-resistant S. aureus (MRSA) isolate (isolate P8), and one ciprofloxacin-resistant mutant (grlA) of P8 (isolate P8-4). The VGS tested comprised one penicillin-susceptible isolate and one penicillin-resistant isolate (Streptococcus oralis 226 and Streptococcus mitis 531, respectively). To simulate the kinetics of drugs in humans, rats were infused intravenously with garenoxacin every 24 h (peak and trough levels in serum, 6.1 and 1.0 mg/liter, respectively; area under the concentration-time curve [AUC], 63.4 mg. h/liter) or levofloxacin every 12 h (peak and trough levels in serum, 7.3 and 1.5 mg/liter, respectively; AUC, 55.6 mg. h/liter) for 3 or 5 days. Flucloxacillin, vancomycin, and ceftriaxone were used as control drugs. Garenoxacin, levofloxacin, flucloxacillin, and vancomycin sterilized >/=70% of the vegetations infected with both ciprofloxacin-susceptible staphylococcal isolates (P < 0.05 versus the results for the controls). Garenoxacin and vancomycin also sterilized 70% of the vegetations infected with ciprofloxacin-resistant MRSA isolate P8-4, whereas treatment with levofloxacin failed against this organism (cure rate, 0%; P < 0.05 versus the results obtained with the comparator drugs). Garenoxacin did not select for resistant derivatives in vivo. In contrast, levofloxacin selected for resistant variants in four of six rats infected with MRSA isolate P8-4. Garenoxacin sterilized 90% of the vegetations infected with both penicillin-susceptible and penicillin-resistant isolates of VGS. Levofloxacin sterilized only 22 and 40% of the vegetations infected with penicillin-susceptible S. oralis 226 and penicillin-resistant S. mitis 531, respectively. Ceftriaxone sterilized only 40% of those infected with penicillin-resistant S. mitis 531 (P < 0.05 versus the results obtained with garenoxacin). No quinolone-resistant VGS were detected. In all the experiments successful quinolone treatment was predicted by specific pharmacodynamic criteria (D. R. Andes and W. A. Craig, Clin. Infect. Dis. 27:47-50, 1998). The fact that the activity of garenoxacin was equal or superior to those of the standard comparators against staphylococci and VGS indicates that it is a potential alternative for the treatment of infections caused by such bacteria.
Resumo:
Extinction, recolonization, and local adaptation are common in natural spatially structured populations. Understanding their effect upon genetic variation is important for systems such as genetically modified organism management or avoidance of drug resistance. Theoretical studies on the effect of extinction and recolonization upon genetic variance started appearing in the 1970s, but the role of local adaptation still has no good theoretical basis. Here we develop a model of a haploid species in a metapopulation in which a locally adapted beneficial allele is introduced. We study the effect of different spatial patterns of local adaptation, and different metapopulation dynamics, upon the fixation probability of the beneficial allele. Controlling for the average selection pressure, we find that a small area of positive selection can significantly increase the global probability of fixation. However, local adaptation becomes less important as extinction rate increases. Deme extinction and recolonization have a spatial smoothing effect that effectively reduces spatial variation in fitness.
Resumo:
RP 59500 is a new injectable streptogramin composed of two synergistic components (quinupristin and dalfopristin) which are active against erythromycin-susceptible and -resistant gram-positive pathogens. The present experiments compared the therapeutic efficacy of RP 59500 with that of vancomycin against experimental endocarditis due to either of two erythromycin-susceptible or two constitutively erythromycin-resistant isolates of methicillin-resistant Staphylococcus aureus. RP 59500 had low MICs for the four test organisms as well as for 24 additional isolates (the MIC at which 90% of the isolates were inhibited was < 1 mg/liter) which were mostly inducibly (47%) or constitutively (39%) erythromycin resistant. Aortic endocarditis in rats was produced with catheter-induced vegetations. Three-day therapy was initiated 12 h after infection, and the drugs were delivered via a computerized pump, which permitted the mimicking of the drug kinetics produced in human serum by twice-daily intravenous injections of 7 mg of RP 59500 per kg of body weight or 1 g of vancomycin. Both antibiotics reduced vegetation bacterial titers to below detection levels in ca. 70% of animals infected with the erythromycin-susceptible isolates (P < 0.05 compared with titers in controls). Vancomycin was also effective against the constitutively resistant strains, but RP 59500 failed against these isolates. Further experiments proved that RP 59500 failures were related to the very short life span of dalfopristin in serum (< or = 2 h, compared with > or = 6 h for quinupristin), since successful treatment was restored by artificially prolonging the dalfopristin levels for 6 h. Thus, RP 59500 is a promising alternative to vancomycin against methicillin-resistant S. aureus infections, provided that pharmacokinetic parameters are adjusted to afford prolonged levels of both of its constituents in serum. This observation is also relevant to humans, in whom the life span of dalfopristin in serum is also shorter than that of quinupristin.
Resumo:
The treatment of multiple myeloma has undergone significant changes in the recent past. The arrival of novel agents, especially thalidomide, bortezomib and lenalidomide, has expanded treatment options and patient outcomes are improving significantly. This article summarises the discussions of an expert meeting which was held to debate current treatment practices for multiple myeloma in Switzerland concerning the role of the novel agents and to provide recommendations for their use in different treatment stages based on currently available clinical data. Novel agent combinations for the treatment of newly diagnosed, as well as relapsed multiple myeloma are examined. In addition, the role of novel agents in patients with cytogenetic abnormalities and renal impairment, as well as the management of the most frequent side effects of the novel agents are discussed. The aim of this article is to assist in treatment decisions in daily clinical practice to achieve the best possible outcome for patients with multiple myeloma.
Resumo:
BACKGROUND: Low p27 and high Skp2 immunoreactivity are associated with a poor prognosis and other poor prognostic features including resistant phenotypes and antiestrogen drug resistance. We investigated these proteins in two International Breast Cancer Study Group trials studying node-negative early breast cancer. PATIENTS AND METHODS: Trial VIII compared chemotherapy followed by goserelin with either modality alone in premenopausal patients. Trial IX compared chemotherapy followed by tamoxifen with tamoxifen alone in postmenopausal patients. Central Pathology Office assessed p27 and Skp2 expression in the primary tumor by immunohistochemistry among 1631 (60%) trial patients. RESULTS: p27 and Skp2 were inversely related; 13% of tumors expressed low p27 and high Skp2. Low p27 and high Skp2 were associated with unfavorable prognostic factors including larger size and higher grade tumors, absence of estrogen receptor and progesterone receptor, human epidermal growth factor receptor 2 overexpression and high Ki-67 (each P < 0.05). Low p27 and high Skp2 were not associated with disease-free survival (P = 0.42 and P = 0.48, respectively). The relative effects of chemo-endocrine versus endocrine therapy were similar regardless of p27 or Skp2. CONCLUSIONS: We confirm the association of low p27 and high Skp2 with other poor prognostic features, but found no predictive or prognostic value, and therefore do not recommend routine determination of p27 and Skp2 for node-negative breast cancer.
Resumo:
The QDR (quinidine drug resistance) family of genes encodes transporters belonging to the MFS (major facilitator superfamily) of proteins. We show that QDR transporters, which are localized to the plasma membrane, do not play a role in drug transport. Hence, null mutants of QDR1, QDR2 and QDR3 display no alterations in susceptibility to azoles, polyenes, echinocandins, polyamines or quinolines, or to cell wall inhibitors and many other stresses. However, the deletion of QDR genes, individually or collectively, led to defects in biofilm architecture and thickness. Interestingly, QDR-lacking strains also displayed attenuated virulence, but the strongest effect was observed with qdr2∆, qdr3∆ and in qdr1/2/3∆ strains. Notably, the attenuated virulence and biofilm defects could be reversed upon reintegration of QDR genes. Transcripts profiling confirmed differential expression of many biofilm and virulence-related genes in the deletion strains as compared with wild-type Candida albicans cells. Furthermore, lipidomic analysis of QDR-deletion mutants suggests massive remodelling of lipids, which may affect cell signalling, leading to the defect in biofilm development and attenuation of virulence. In summary, the results of the present study show that QDR paralogues encoding MFS antiporters do not display conserved functional linkage as drug transporters and perform functions that significantly affect the virulence of C. albicans.
Resumo:
PURPOSE: The phosphoinositide 3-kinase (PI3K)/Akt pathway is frequently activated in human cancer and plays a crucial role in medulloblastoma biology. We were interested in gaining further insight into the potential of targeting PI3K/Akt signaling as a novel antiproliferative approach in medulloblastoma. EXPERIMENTAL DESIGN: The expression pattern and functions of class I(A) PI3K isoforms were investigated in medulloblastoma tumour samples and cell lines. Effects on cell survival and downstream signaling were analyzed following down-regulation of p110alpha, p110beta, or p110delta by means of RNA interference or inhibition with isoform-specific PI3K inhibitors. RESULTS: Overexpression of the catalytic p110alpha isoform was detected in a panel of primary medulloblastoma samples and cell lines compared with normal brain tissue. Down-regulation of p110alpha expression by RNA interference impaired the growth of medulloblastoma cells, induced apoptosis, and led to decreased migratory capacity of the cells. This effect was selective, because RNA interference targeting of p110beta or p110delta did not result in a comparable impairment of DAOY cell survival. Isoform-specific p110alpha inhibitors also impaired medulloblastoma cell proliferation and sensitized the cells to chemotherapy. Medulloblastoma cells treated with p110alpha inhibitors further displayed reduced activation of Akt and the ribosomal protein S6 kinase in response to stimulation with hepatocyte growth factor and insulin-like growth factor-I. CONCLUSIONS: Together, our data reveal a novel function of p110alpha in medulloblastoma growth and survival.
Resumo:
Streptozotocin injection in animals destroys pancreatic beta cells, leading to insulinopenic diabetes. Here, we evaluated the toxic effect of streptozotocin (STZ) in GLUT2(-/-) mice reexpressing either GLUT1 or GLUT2 in their beta cells under the rat insulin promoter (RIPG1 x G2(-/-) and RIPG2 x G2(-/-) mice, respectively). We demonstrated that injection of STZ into RIPG2 x G2(-/-) mice induced hyperglycemia (>20 mM) and an approximately 80% reduction in pancreatic insulin content. In vitro, the viability of RIPG2 x G2(-/-) islets was also strongly reduced. In contrast, STZ did not induce hyperglycemia in RIPG1 x G2(-/-) mice and did not reduce pancreatic insulin content. The viability of in vitro cultured RIPG1 x G2(-/-) islets was also unaffected by STZ. As islets from each type of transgenic mice were functionally indistinguishable, these data strongly support the notion that STZ toxicity toward beta cells depends on the expression of GLUT2.
Resumo:
BACKGROUND: The criteria for choosing relevant cell lines among a vast panel of available intestinal-derived lines exhibiting a wide range of functional properties are still ill-defined. The objective of this study was, therefore, to establish objective criteria for choosing relevant cell lines to assess their appropriateness as tumor models as well as for drug absorption studies. RESULTS: We made use of publicly available expression signatures and cell based functional assays to delineate differences between various intestinal colon carcinoma cell lines and normal intestinal epithelium. We have compared a panel of intestinal cell lines with patient-derived normal and tumor epithelium and classified them according to traits relating to oncogenic pathway activity, epithelial-mesenchymal transition (EMT) and stemness, migratory properties, proliferative activity, transporter expression profiles and chemosensitivity. For example, SW480 represent an EMT-high, migratory phenotype and scored highest in terms of signatures associated to worse overall survival and higher risk of recurrence based on patient derived databases. On the other hand, differentiated HT29 and T84 cells showed gene expression patterns closest to tumor bulk derived cells. Regarding drug absorption, we confirmed that differentiated Caco-2 cells are the model of choice for active uptake studies in the small intestine. Regarding chemosensitivity we were unable to confirm a recently proposed association of chemo-resistance with EMT traits. However, a novel signature was identified through mining of NCI60 GI50 values that allowed to rank the panel of intestinal cell lines according to their drug responsiveness to commonly used chemotherapeutics. CONCLUSIONS: This study presents a straightforward strategy to exploit publicly available gene expression data to guide the choice of cell-based models. While this approach does not overcome the major limitations of such models, introducing a rank order of selected features may allow selecting model cell lines that are more adapted and pertinent to the addressed biological question.