214 resultados para Vessel detection
Resumo:
BACKGROUND: Autofluorescence bronchoscopy (AFB) is a highly sensitive tool for the detection of early bronchial cancers. However, its specificity remains limited due to primarily false positive results induced by hyperplasia, metaplasia and inflammation. We have investigated the potential of blue-violet backscattered light to eliminate false positive results during AFB in a clinical pilot study. METHODS: The diagnostic autofluorescence endoscopy (DAFE) system was equipped with a variable band pass filter in the imaging detection path. The backscattering properties of normal and abnormal bronchial mucosae were assessed by computing the contrast between the two tissue types for blue-violet wavelengths ranging between 410 and 490 nm in 12 patients undergoing routine DAFE examination. In a second study including 6 patients we used a variable long pass (LP) filter to determine the spectral design of the emission filter dedicated to the detection of this blue-violet light with the DAFE system. RESULTS: (Pre-)neoplastic mucosa showed a clear wavelength dependence of the backscattering properties of blue-violet light while the reflectivity of normal, metaplastic and hyperplastic autofluorescence positive mucosa was wavelength independent. CONCLUSIONS: Our results showed that the detection of blue-violet light has the potential to reduce the number of false positive results in AFB. In addition we determined the spectral design of the emission filter dedicated to the detection of this blue-violet light with the DAFE system.
Resumo:
Ophthalmologists typically acquire different image modalities to diagnose eye pathologies. They comprise, e.g., Fundus photography, optical coherence tomography, computed tomography, and magnetic resonance imaging (MRI). Yet, these images are often complementary and do express the same pathologies in a different way. Some pathologies are only visible in a particular modality. Thus, it is beneficial for the ophthalmologist to have these modalities fused into a single patient-specific model. The goal of this paper is a fusion of Fundus photography with segmented MRI volumes. This adds information to MRI that was not visible before like vessels and the macula. This paper contributions include automatic detection of the optic disc, the fovea, the optic axis, and an automatic segmentation of the vitreous humor of the eye.
Resumo:
OBJECTIVE: The presence of minority nonnucleoside reverse transcriptase inhibitor (NNRTI)-resistant HIV-1 variants prior to antiretroviral therapy (ART) has been linked to virologic failure in treatment-naive patients. DESIGN: We performed a large retrospective study to determine the number of treatment failures that could have been prevented by implementing minority drug-resistant HIV-1 variant analyses in ART-naïve patients in whom no NNRTI resistance mutations were detected by routine resistance testing. METHODS: Of 1608 patients in the Swiss HIV Cohort Study, who have initiated first-line ART with two nucleoside reverse transcriptase inhibitors (NRTIs) and one NNRTI before July 2008, 519 patients were eligible by means of HIV-1 subtype, viral load and sample availability. Key NNRTI drug resistance mutations K103N and Y181C were measured by allele-specific PCR in 208 of 519 randomly chosen patients. RESULTS: Minority K103N and Y181C drug resistance mutations were detected in five out of 190 (2.6%) and 10 out of 201 (5%) patients, respectively. Focusing on 183 patients for whom virologic success or failure could be examined, virologic failure occurred in seven out of 183 (3.8%) patients; minority K103N and/or Y181C variants were present prior to ART initiation in only two of those patients. The NNRTI-containing, first-line ART was effective in 10 patients with preexisting minority NNRTI-resistant HIV-1 variant. CONCLUSION: As revealed in settings of case-control studies, minority NNRTI-resistant HIV-1 variants can have an impact on ART. However, the implementation of minority NNRTI-resistant HIV-1 variant analysis in addition to genotypic resistance testing (GRT) cannot be recommended in routine clinical settings. Additional associated risk factors need to be discovered.
Resumo:
The recent approval of crizotinib for the treatment of anaplastic lymphoma kinase (ALK)-rearranged advanced non-small cell lung cancer (NSCLC) in the US and other countries has provoked intense interest in ALK rearrangements as oncogenic drivers, and promises to revolutionise the way in which NSCLC is diagnosed and treated. Here, we review clinical data to date for the use of crizotinib to treat patients with advanced, ALK-positive NSCLC and consider issues surrounding the detection of ALK-positivity including the use of fluorescence in situ hybridisation and the other potential techniques available, and their suitability for ALK screening. We also discuss the emergence of resistance to crizotinib therapy and the range of other ALK inhibitors currently in development.
Resumo:
In diabetes mellitus, it is expected to see a common, mainly sensitive, distal symmetrical polyneuropathy (DPN) involving a large proportion of diabetic patients according to known risk factors. Several other diabetic peripheral neuropathies are recognized, such as dysautonomia and multifocal neuropathies including lumbosacral radiculoplexus and oculomotor palsies. In this review, general aspects of diabetic neuropathies are examined, and it is discussed why and how the general practionner has to perform a yearly examination. At the present time, some consensuses emerge to ask help from the specialist when faced to other forms of peripheral neuropathies than distal symmetrical DPN.
Resumo:
BACKGROUND: Conventional x-ray angiography frequently underestimates the true burden of atherosclerosis. Although intravascular ultrasound allows for imaging of coronary plaque, this invasive technique is inappropriate for screening or serial examinations. We therefore sought to develop a noninvasive free-breathing MR technique for coronary vessel wall imaging. We hypothesized that such an approach would allow for in vivo imaging of coronary atherosclerosis. METHODS AND RESULTS: Ten subjects, including 5 healthy adult volunteers (aged 35+/-17 years, range 19 to 56 years) and 5 patients (aged 60+/-4 years, range 56 to 66 years) with x-ray-confirmed coronary artery disease (CAD), were studied with a T2-weighted, dual-inversion, fast spin-echo MR sequence. Multiple adjacent 5-mm cross-sectional images of the proximal right coronary artery were obtained with an in-plane resolution of 0.5x1.0 mm. A right hemidiaphragmatic navigator was used to facilitate free-breathing MR acquisition. Coronary vessel wall images were readily acquired in all subjects. Both coronary vessel wall thickness (1.5+/-0.2 versus 1.0+/-0.2 mm) and wall area (21.2+/-3.1 versus 13.7+/-4.2 mm(2)) were greater in patients with CAD (both P:<0.02 versus healthy adults). CONCLUSIONS: In vivo free-breathing coronary vessel wall and plaque imaging with MR has been successfully implemented in humans. Coronary wall thickness and wall area were significantly greater in patients with angiographic CAD. The presented technique may have potential applications in patients with known or suspected atherosclerotic CAD or for serial evaluation after pharmacological intervention.
Resumo:
We present a silicon chip-based approach for the enhanced sensitivity detection of surface-immobilized fluorescent molecules. Green fluorescent protein (GFP) is bound to the silicon substrate by a disuccinimidyl terephtalate-aminosilane immobilization procedure. The immobilized organic layers are characterized by surface analysis techniques, like ellipsometry, atomic force microscopy (AFM) and X-ray induced photoelectron spectroscopy. We obtain a 20-fold enhancement of the fluorescent signal, using constructive interference effects in a fused silica dielectric layer, deposited before immobilization onto the silicon. Our method opens perspectives to increase by an order of magnitude the fluorescent response of surface immobilized DNA- or protein-based layers for a variety of biosensor applications.
Resumo:
Front crawl is an alternating swimming stroke technique in which different phases of arm movement induce changes in acceleration of limbs and body. This study proposes a new approach to use inertial body worn sensors to estimate main temporal phases of front crawl. Distinctive features in kinematic signals are used to detect the temporal phases. These temporal phases are key information sources of qualitative and quantitative evaluation of swimming coordination, which have been assessed previously by video analysis. The present method has been evaluated upon a wide range of coordination and showed a difference of 4.9% with video based system. The results are in line with video analysis inter-operator variability yet offering an easy-to-use system for trainers.
Resumo:
The pericentric inversion on chromosome 16 [inv(16)(p13q22)] and related t(16;16)(p13;q22) are recurrent aberrations associated with acute myeloid leukemia (AML) M4 Eo. Both abberations result in a fusion of the core binding factor beta (CBFB) and smooth muscle myosin heavy chain gene (MYH11). A selected genomic 6.9-kb BamHl probe detects MYH11 DNA rearrangements in 18 of 19 inv(16)/t(16;16) patients tested using HindIII digested DNA. The rearranged fragments were not detectable after remission in two cases tested, while they were present after relapse in one of these two cases tested.
Resumo:
This review covers two important techniques, high resolution nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS), used to characterize food products and detect possible adulteration of wine, fruit juices, and olive oil, all important products of the Mediterranean Basin. Emphasis is placed on the complementary use of SNIF-NMR (site-specific natural isotopic fractionation nuclear magnetic resonance) and IRMS (isotope-ratio mass spectrometry) in association with chemometric methods for detecting the adulteration.