719 resultados para Ventricular function - drug effects
Resumo:
Although their contribution remains unclear, lipids may facilitate noncanonical routes of protein internalization into cells such as those used by cell-penetrating proteins. We show that protein C inhibitor (PCI), a serine protease inhibitor (serpin), rapidly transverses the plasma membrane, which persists at low temperatures and enables its nuclear targeting in vitro and in vivo. Cell membrane translocation of PCI necessarily requires phosphatidylethanolamine (PE). In parallel, PCI acts as a lipid transferase for PE. The internalized serpin promotes phagocytosis of bacteria, thus suggesting a function in host defense. Membrane insertion of PCI depends on the conical shape of PE and is associated with the formation of restricted aqueous compartments within the membrane. Gain- and loss-of-function mutations indicate that the transmembrane passage of PCI requires a branched cavity between its helices H and D, which, according to docking studies, precisely accommodates PE. Our findings show that its specific shape enables cell surface PE to drive plasma membrane translocation of cell-penetrating PCI.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that regulate the expression of many genes involved in lipid metabolism. The biological roles of PPARalpha and PPARgamma are relatively well understood, but little is known about the function of PPARbeta. To address this question, and because PPARbeta is expressed to a high level in the developing brain, we used reaggregated brain cell cultures prepared from dissociated fetal rat telencephalon as experimental model. In these primary cultures, the fetal cells initially form random aggregates, which progressively acquire a tissue-specific pattern resembling that of the brain. PPARs are differentially expressed in these aggregates, with PPARbeta being the prevalent isotype. PPARalpha is present at a very low level, and PPARgamma is absent. Cell type-specific expression analyses revealed that PPARbeta is ubiquitous and most abundant in some neurons, whereas PPARalpha is predominantly astrocytic. We chose acyl-CoA synthetases (ACSs) 1, 2, and 3 as potential target genes of PPARbeta and first analyzed their temporal and cell type-specific pattern. This analysis indicated that ACS2 and PPARbeta mRNAs have overlapping expression patterns, thus designating the ACS2 gene as a putative target of PPARbeta. Using a selective PPARbeta activator, we found that the ACS2 gene is transcriptionally regulated by PPARbeta, demonstrating a role for PPARbeta in brain lipid metabolism.
Resumo:
Idiopathic premature ventricular complexes originating from the ventricular outflow tract: evaluation, prognosis and management The prognosis of ventricular premature complexes (VPC) in the absence of heart disease is considered benign. VPC usually originate from the right or, less commonly, left ventricular outflow tract. QRS complexes therefore usually assume a left bundle branch block and inferior axis morphology. These VPC, particularly if very frequent (> 20,000 per day), may adversely affect left ventricular function and their suppression can restore normal function. Moreover, there is a clinical overlap with arrhythmogenic right ventricular dysplasia and this diagnosis should be considered when facing a left bundle branch block shaped VPC. However, the prognosis of outflow tract VPC is good for appropriately selected patients with normal left ventricular function, absence of syncope or ventricular tachycardia, and no evidence of cardiac disease.
Resumo:
As an approved vaccine adjuvant for use in humans, alum has vast health implications, but, as it is a crystal, questions remain regarding its mechanism. Furthermore, little is known about the target cells, receptors, and signaling pathways engaged by alum. Here we report that, independent of inflammasome and membrane proteins, alum binds dendritic cell (DC) plasma membrane lipids with substantial force. Subsequent lipid sorting activates an abortive phagocytic response that leads to antigen uptake. Such activated DCs, without further association with alum, show high affinity and stable binding with CD4(+) T cells via the adhesion molecules intercellular adhesion molecule-1 (ICAM-1) and lymphocyte function-associated antigen-1 (LFA-1). We propose that alum triggers DC responses by altering membrane lipid structures. This study therefore suggests an unexpected mechanism for how this crystalline structure interacts with the immune system and how the DC plasma membrane may behave as a general sensor for solid structures.
Resumo:
PURPOSE: To test the ability of two preparations of FGF2-saporin, either FGF2 chemically conjugated to saporin (FGF2-SAP) or genetically engineered FGF2-saporin (rFGF2-SAP) to inhibit the growth of bovine epithelial lens (BEL) cells in vitro when in solution and when immobilized on heparin surface-modified (HSM) polymethylmethacrylate (PMMA) intraocular lenses (IOLs). METHOD: Bovine epithelial lens cells were incubated with various concentrations FGF2-saporin for as long as 4 days. The number of surviving cells was determined by counting the number of nuclei. Because FGF2 binds to heparin, FGF2-saporin was incubated with HSM PMMA IOLs; excess toxin was washed off, and the BEL cells were grown on the FGF2-saporin-treated IOLs (HSM and non-HSM) for 4 days. Cell density was determined by image analysis. RESULTS: Both FGF2-SAP and rFGF2-SAP were highly cytotoxic (nM range), with rFGF2-SAP 10 times less active than FGF2-SAP. FGF2-saporin bound to the surface of HSM IOLs and eluted by 2M NaCl retained its activity. Toxin bound to HSM IOLs killed more than 90% of the BEL cells placed on the IOL surface within 4 days. The ability of FGF2-saporin to prevent the growth of cells on the IOL surface was strictly dependent on the presence of heparin on the IOL. CONCLUSIONS: FGF2-saporin is bound to HSM PMMA IOLs and prevents the growth of epithelial cells on the surface of the lens.
Resumo:
BACKGROUND: We assessed end-diastolic right ventricular (RV) dimensions and left ventricular (LV) ejection fraction by use of intraoperative transesophageal echocardiography before and after surgical correction of pectus excavatum in adults. METHODS: A prospective study was conducted including 17 patients undergoing surgical correction of pectus excavatum according to the technique of Ravitch-Shamberger between 1999 and 2004. Intraoperative transesophageal echocardiography was performed under general anesthesia before and after surgery to assess end-diastolic RV dimensions and LV ejection fraction. The end-diastolic RV diameter and area were measured in four-chamber and RV inflow-outflow view, and the RV volume was calculated from these data. The LV was assessed by transgastric short-axis view, and its ejection fraction was calculated by use of the Teichholz formula. RESULTS: The end-diastolic RV diameter, area, and volume all significantly increased after surgery (mean values +/- SD, respectively: 2.4 +/- 0.8 cm versus 3.0 +/- 0.9 cm, p < 0.001; 12.5 +/- 5.2 cm(2) versus 18.4 +/- 7.5 cm(2), p < 0.001; and 21.7 +/- 11.7 mL versus 40.8 +/- 23 mL, p < 0.001). The LV ejection fraction also significantly increased after surgery (58.4% +/- 15% versus 66.2% +/- 6%, p < 0.001). CONCLUSIONS: Surgical correction of pectus excavatum according to Ravitch-Shamberger technique results in a significant increase in end-diastolic RV dimensions and a significantly increased LV ejection fraction.
Resumo:
The present study describes in primates the effects of a spinal cord injury on the number and size of the neurons in the magnocellular part of the red nucleus (RNm), the origin of the rubrospinal tract, and evaluates whether a neutralization of Nogo-A reduces the lesioned-induced degenerative processes observed in RNm. Two groups of monkeys were subjected to unilateral section of the spinal cord affecting the rubrospinal tract; one group was subsequently treated with an antibody neutralizing Nogo-A; the second group received a control antibody. Intact animals were also included in the study. Counting neurons stained with a monoclonal antibody recognizing non-phosphorylated epitopes on neurofilaments (SMI-32) indicated that their number in the contralesional RNm was consistently inferior to that in the ipsilesional RNm, in a proportion amounting up to 35%. The lesion also induced shrinkage of the soma of the neurons detected in the contralesional RNm. Infusing an anti-Nogo-A antibody at the site of the lesion did not increase the proportion of SMI-32 positive rubrospinal neurons in the contralesional RNm nor prevent shrinkage.
Resumo:
BACKGROUND AND PURPOSE: The use of ± 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') is associated with cardiovascular complications and hyperthermia. EXPERIMENTAL APPROACH: We assessed the effects of the α(1) - and β-adrenoceptor antagonist carvedilol on the cardiostimulant, thermogenic and subjective responses to MDMA in 16 healthy subjects. Carvedilol (50 mg) or placebo was administered 1 h before MDMA (125 mg) or placebo using a randomized, double-blind, placebo-controlled, four-period crossover design. KEY RESULTS Carvedilol reduced MDMA-induced elevations in blood pressure, heart rate and body temperature. Carvedilol did not affect the subjective effects of MDMA including MDMA-induced good drug effects, drug high, drug liking, stimulation or adverse effects. Carvedilol did not alter the plasma exposure to MDMA. CONCLUSIONS AND IMPLICATIONS: α(1) - and β-Adrenoceptors contribute to the cardiostimulant and thermogenic effects of MDMA in humans but not to its psychotropic effects. Carvedilol could be useful in the treatment of cardiovascular and hyperthermic complications associated with ecstasy use.
Resumo:
OBJECTIVE: A single course of antenatal corticosteroids (ACS) is associated with a reduction in respiratory distress syndrome and neonatal death. Multiple Courses of Antenatal Corticosteroids Study (MACS), a study involving 1858 women, was a multicentre randomized placebo-controlled trial of multiple courses of ACS, given every 14 days until 33+6 weeks or birth, whichever came first. The primary outcome of the study, a composite of neonatal mortality and morbidity, was similar for the multiple ACS and placebo groups (12.9% vs. 12.5%), but infants exposed to multiple courses of ACS weighed less, were shorter, and had smaller head circumferences. Thus for women who remain at increased risk of preterm birth, multiple courses of ACS (every 14 days) are not recommended. Chronic use of corticosteroids is associated with numerous side effects including weight gain and depression. The aim of this postpartum assessment was to ascertain if multiple courses of ACS were associated with maternal side effects. METHODS: Three months postpartum, women who participated in MACS were asked to complete a structured questionnaire that asked about maternal side effects of corticosteroid use during MACS and included the Edinburgh Postnatal Depression Scale. Women were also asked to evaluate their study participation. RESULTS: Of the 1858 women randomized, 1712 (92.1%) completed the postpartum questionnaire. There were no significant differences in the risk of maternal side effects between the two groups. Large numbers of women met the criteria for postpartum depression (14.1% in the ACS vs. 16.0% in the placebo group). Most women (94.1%) responded that they would participate in the trial again. CONCLUSION: In pregnancy, corticosteroids are given to women for fetal lung maturation and for the treatment of various maternal diseases. In this international multicentre randomized controlled trial, multiple courses of ACS (every 14 days) were not associated with maternal side effects, and the majority of women responded that they would participate in such a study again.
Resumo:
SUMMARY: Reluctance has been expressed about treating chronic hepatitis C in active intravenous (IV) drug users (IDUs), and this is found in both international guidelines and routine clinical practice. However, the medical literature provides no evidence for an unequivocal treatment deferral of this risk group. We retrospectively analyzed the direct effect of IV drug use on treatment outcome in 500 chronic hepatitis C patients enrolled in the Swiss Hepatitis C Cohort Study. Patients were eligible for the study if they had their serum hepatitis C virus (HCV) RNA tested 6 months after the end of treatment and at least one visit during the antiviral therapy, documenting the drug use status. Five hundred patients fulfilled the inclusion criteria (199 were IDU and 301 controls). A minimum exposure to 80% of the scheduled cumulative dose of antivirals was reached in 66.0% of IDU and 60.5% of controls (P = NS). The overall sustained virological response (SVR) rate was 63.6%. Active IDU reached a SVR of 69.3%, statistically not significantly different from controls (59.8%). A multivariate analysis for treatment success showed no significant negative influence of active IV drug use. In conclusion, our study shows no relevant direct influence of IV drugs on the efficacy of anti-HCV therapy among adherent patients.
Resumo:
Repeated antimalarial treatment for febrile episodes and self-treatment are common in malaria-endemic areas. The intake of antimalarials prior to participating in an in vivo study may alter treatment outcome and affect the interpretation of both efficacy and safety outcomes. We report the findings from baseline plasma sampling of malaria patients prior to inclusion into an in vivo study in Tanzania and discuss the implications of residual concentrations of antimalarials in this setting. In an in vivo study conducted in a rural area of Tanzania in 2008, baseline plasma samples from patients reporting no antimalarial intake within the last 28 days were screened for the presence of 14 antimalarials (parent drugs or metabolites) using liquid chromatography-tandem mass spectrometry. Among the 148 patients enrolled, 110 (74.3%) had at least one antimalarial in their plasma: 80 (54.1%) had lumefantrine above the lower limit of calibration (LLC = 4 ng/mL), 7 (4.7%) desbutyl-lumefantrine (4 ng/mL), 77 (52.0%) sulfadoxine (0.5 ng/mL), 15 (10.1%) pyrimethamine (0.5 ng/mL), 16 (10.8%) quinine (2.5 ng/mL) and none chloroquine (2.5 ng/mL). The proportion of patients with detectable antimalarial drug levels prior to enrollment into the study is worrying. Indeed artemether-lumefantrine was supposed to be available only at government health facilities. Although sulfadoxine-pyrimethamine is only recommended for intermittent preventive treatment in pregnancy (IPTp), it was still widely used in public and private health facilities and sold in drug shops. Self-reporting of previous drug intake is unreliable and thus screening for the presence of antimalarial drug levels should be considered in future in vivo studies to allow for accurate assessment of treatment outcome. Furthermore, persisting sub-therapeutic drug levels of antimalarials in a population could promote the spread of drug resistance. The knowledge on drug pressure in a given population is important to monitor standard treatment policy implementation.
Resumo:
Peroxisome proliferators regulate the transcription of genes by activating ligand-dependent transcription factors, which, due to their structure and function, can be assigned to the superfamily of nuclear hormone receptors. Three such peroxisome proliferator-activated receptors (PPAR alpha, beta, and gamma) have been cloned in Xenopus laevis. Their mRNAs are expressed differentially; xPPAR alpha and beta but not xPPAR gamma are expressed in oocytes and embryos. In the adult, expression of xPPAR alpha and beta appears to be ubiquitous, and xPPAR gamma is mainly observed in adipose tissue and kidney. Immunocytochemical analysis revealed that PPARs are nuclear proteins, and that their cytoplasmic-nuclear translocation is independent of exogenous activators. A target gene of PPARs is the gene encoding acyl-CoA oxidase (ACO), which catalyzes the rate-limiting step in the peroxisomal beta-oxidation of fatty acids. A peroxisome proliferator response element (PPRE), to which PPARs bind, has been identified within the promoter of the ACO gene. Besides the known xenobiotic activators of PPARs, such as hypolipidemic drugs, natural activators have been identified. Polyunsaturated fatty acids at physiological concentrations are efficient activators of PPARs, and 5,8,11,14-eicosatetraynoic acid (ETYA), which is the alkyne homolog of arachidonic acid, is the most potent activator of xPPAR alpha described to date. Taken together, our data suggest that PPARs have an important role in lipid metabolism.
Resumo:
In the principal cell of the renal collecting duct, vasopressin regulates the expression of a gene network responsible for sodium and water reabsorption through the regulation of the water channel and the epithelial sodium channel (ENaC). We have recently identified a novel vasopressin-induced transcript (VIT32) that encodes for a 142 amino acid vasopressin-induced protein (VIP32), which has no homology with any protein of known function. The Xenopus oocyte expression system revealed two functions: (i) when injected alone, VIT32 cRNA rapidly induces oocyte meiotic maturation through the activation of the maturation promoting factor, the amphibian homolog of the universal M phase trigger Cdc2/cyclin; and (ii) when co-injected with the ENaC, VIT32 cRNA selectively downregulates channel activity, but not channel cell surface expression. In the kidney principal cell, VIP32 may be involved in the downregulation of transepithelial sodium transport observed within a few hours after vasopressin treatment. VIP32 belongs to a novel gene family ubiquitously expressed in oocyte and somatic cells that may be involved in G to M transition and cell cycling.
Resumo:
An in vitro model, the aggregating brain cell culture of fetal rat telencephalon, has been used to study the maturation-dependent sensitivity of brain cells to two organophosphorus pesticides (OPs), chlorpyrifos and parathion, and to their oxon derivatives. Immature (DIV 5-15) or differentiated (DIV 25-35) brain cells were treated continuously for 10 days. Acetylcholinesterase (AChE) inhibitory potency for the OPs was compared to that of eserine (physostigmine), a reversible AChE inhibitor. Oxon derivatives were more potent AChE inhibitors than the parent compounds, and parathion was more potent than chlorpyrifos. No maturation-dependent differences for AChE inhibition were found for chlorpyrifos and eserine, whereas for parathion and paraoxon there was a tendency to be more effective in immature cultures, while the opposite was true for chlorpyrifos-oxon. Toxic effects, assessed by measuring protein content as an index of general cytotoxicity, and various enzyme activities as cell-type-specific neuronal and glial markers (ChAT and GAD, for cholinergic and GABAergic neurons, respectively, and GS and CNP, for astrocytes and oligodendrocytes, respectively) were only found at more than 70% of AChE inhibition. Immature compared to differentiated cholinergic neurons appeared to be more sensitive to OP treatments. The oxon derivates were found to be more toxic on neurons than the parent compounds, and chlorpyrifos was more toxic than parathion. Eserine was not neurotoxic. These results indicate that inhibition of AChE remains the most sensitive macromolecular target of OP exposure, since toxic effects were found at concentrations in which AChE was inhibited. Furthermore, the compound-specific reactions, the differential pattern of toxicity of OPs compared to eserine, and the higher sensitivity of immature brain cells suggest that the toxic effects and inhibition of AChE are unrelated.
Resumo:
GLUT2 expression is strongly decreased in glucose-unresponsive pancreatic beta cells of diabetic rodents. This decreased expression is due to circulating factors distinct from insulin or glucose. Here we evaluated the effect of palmitic acid and the synthetic glucocorticoid dexamethasone on GLUT2 expression by in vitro cultured rat pancreatic islets. Palmitic acid induced a 40% decrease in GLUT2 mRNA levels with, however, no consistent effect on protein expression. Dexamethasone, in contrast, had no effect on GLUT2 mRNA, but decreased GLUT2 protein by about 65%. The effect of dexamethasone was more pronounced at high glucose concentrations and was inhibited by the glucocorticoid antagonist RU-486. Biosynthetic labeling experiments revealed that GLUT2 translation rate was only minimally affected by dexamethasone, but that its half-life was decreased by 50%, indicating that glucocorticoids activated a posttranslational degradation mechanism. This degradation mechanism was not affecting all membrane proteins, since the alpha subunit of the Na+/K+-ATPase was unaffected. Glucose-induced insulin secretion was strongly decreased by treatment with palmitic acid and/or dexamethasone. The insulin content was decreased ( approximately 55 percent) in the presence of palmitic acid, but increased ( approximately 180%) in the presence of dexamethasone. We conclude that a combination of elevated fatty acids and glucocorticoids can induce two common features observed in diabetic beta cells, decreased GLUT2 expression, and loss of glucose-induced insulin secretion.