244 resultados para UBIQUITIN-PROTEASOME PATHWAY
Resumo:
The epithelial sodium channel (ENaC) is critical for sodium and BP homeostasis. ENaC is regulated by Nedd4-2-mediated ubiquitylation, which leads to its internalization; this process can be reversed by deubiquitylation, which is regulated by the aldosterone-induced enzyme Usp2-45. In a second regulatory pathway, ENaC can be activated by luminal serine protease-mediated cleavage of its extracellular loops. Whether these two regulatory processes interact, however, is unknown. Here, in HEK293 cells stably transfected with ENaC, Usp2-45 interacted with ENaC, leading to deubiquitylation of the channel and stimulation of ENaC activity >20-fold. This was accompanied by a modest increase in cell surface expression of ENaC and by proteolytic cleavage of alphaENaC and gammaENaC at their extracellular loops. When endocytosis was inhibited with dominant negative dynamin (DynK44R), channel density and gammaENaC cleavage were increased, but alphaENaC cleavage and ENaC activity were not augmented. When Usp2-45 was coexpressed with DynK44R, both alphaENaC cleavage and activity were recovered. In summary, these data suggest that Usp2-45 deubiquitylation of ENaC enhances the proteolytic activation of both alphaENaC and gammaENaC, possibly by inducing a conformational change and by interfering with endocytosis, respectively
Resumo:
Nedd4-2 has been proposed to play a critical role in regulating epithelial Na+ channel (ENaC) activity. Biochemical and overexpression experiments suggest that Nedd4-2 binds to the PY motifs of ENaC subunits via its WW domains, ubiquitinates them, and decreases their expression on the apical membrane. Phosphorylation of Nedd4-2 (for example by Sgk1) may regulate its binding to ENaC, and thus ENaC ubiquitination. These results suggest that the interaction between Nedd4-2 and ENaC may play a crucial role in Na+ homeostasis and blood pressure (BP) regulation. To test these predictions in vivo, we generated Nedd4-2 null mice. The knockout mice had higher BP on a normal diet and a further increase in BP when on a high-salt diet. The hypertension was probably mediated by ENaC overactivity because 1) Nedd4-2 null mice had higher expression levels of all three ENaC subunits in kidney, but not of other Na+ transporters; 2) the downregulation of ENaC function in colon was impaired; and 3) NaCl-sensitive hypertension was substantially reduced in the presence of amiloride, a specific inhibitor of ENaC. Nedd4-2 null mice on a chronic high-salt diet showed cardiac hypertrophy and markedly depressed cardiac function. Overall, our results demonstrate that in vivo Nedd4-2 is a critical regulator of ENaC activity and BP. The absence of this gene is sufficient to produce salt-sensitive hypertension. This model provides an opportunity to further investigate mechanisms and consequences of this common disorder.
Resumo:
PURPOSE: To look for apoptosis pathways involved in corneal endothelial cell death during acute graft rejection and to evaluate the potential role of nitric oxide in this process. MATERIALS AND METHODS: Corneal buttons from Brown-Norway rats were transplanted into Lewis rat corneas. At different time intervals after transplantation, apoptosis was assessed by diamino-2-phenylindol staining and annexin-V binding on flat-mount corneas, and by terminal transferase dUTP nick end labeling (TUNEL), caspase-3 dependent and leukocyte elastase inhibitor (LEI)/LDNase II caspase-independent pathways on sections. Inducible nitric oxide synthase (NOS-II) expression and the presence of nitrotyrosine were assayed by immunohistochemistry. RESULTS: Graft endothelial cells demonstrated nuclear fragmentation and LEI nuclear translocation, annexin-V binding, and membranes bleb formation. Apoptosis associated with caspase-3 activity or TUNEL-positive reaction was not observed at any time either in the graft or in the recipient corneal endothelial cells. During 14 days posttransplantation, the recipient corneal endothelial cells remained unaltered and their number unchanged in all studied corneas. NOS-II was expressed in infiltrating cells present within the graft. This expression was closely associated with the presence of nitrotyrosine in endothelial and infiltrating cells. CONCLUSION: During the time course of corneal graft rejection, graft endothelial cells undergo apoptosis. Apoptosis is caspase 3 independent and TUNEL negative and is, probably, carried out by an alternative pathway driven by an LEI/L-Dnase II. Peroxynitrite formation may be an additional mechanism for cell toxicity and programmed cell death of the graft endothelial cells during the rejection process in this model.
Resumo:
Erythrocyte concentrates (ECs) are the major labile blood product being transfused worldwide, aiming at curing anemia of diverse origins. In Switzerland, ECs are stored at 4 °C up to 42 days in saline-adenine-glucose-mannitol (SAGM). Such storage induces cellular lesions, altering red blood cells (RBCs) metabolism, protein content and rheological properties. A hot debate exists regarding the impact of the storage lesions, thus the age of ECs on transfusion-related clinical adverse outcomes. Several studies tend to show that poorer outcomes occur in patients receiving older blood products. However, no clear association was demonstrated up to date. While metabolism and early rheological changes are reversible through transfusion of the blood units, oxidized proteins cannot be repaired, and it is likely such irreversible damages would affect the quality of the blood product and the efficiency of the transfusion. In vivo, RBCs are constantly exposed to oxygen fluxes, and are thus well equipped to deal with oxidative challenges. Moreover, functional 20S proteasome complexes allow for recognition and proteolysis of fairly oxidized protein, and some proteins can be eliminated from RBCs by the release of microvesicles. The present PhD thesis is involved in a global research project which goal is to characterize the effect of processing and storage on the quality of ECs. Assessing protein oxidative damages during RBC storage is of major importance to understand the mechanisms of aging of stored RBCs. To this purpose, redox proteomic-based investigations were conducted here. In a first part, cysteine oxidation and protein carbonylation were addressed via 2D-DIGE and derivatization-driven immunodetection approaches, respectively. Then, the oxidized sub- proteomes were characterized through LC-MS/MS identification of proteins in spots of interest (cysteine oxidation) or affinity-purified carbonylated proteins. Gene ontology annotation allowed classifying targets of oxidation according to their molecular functions. In a third part, the P20S activity was evaluated throughout the storage period of ECs, and its susceptibility to highly oxidized environment was investigated. The potential defensive role of microvesiculation was also addressed through the quantification of eliminated carbonylated proteins. We highlighted distinct protein groups differentially affected by cysteine oxidation, either reversibly or irreversibly. In addition, soluble extracts showed a decrease in carbonylation at the beginning of the storage and membrane extracts revealed increasing carbonylation after 4 weeks of storage. Engaged molecular functions revealed that antioxidant (AO) are rather reversibly oxidized at their cysteine residue(s), but are irreversibly oxidized through carbonylation. In the meantime, the 20S proteasome activity is decreased by around 40 % at the end of the storage period. Incubation of fresh RBCs extracts with exogenous oxidized proteins showed a dose-dependent and protein-dependent inhibitory effect. Finally, we proved that the release of microvesicles allows the elimination of increasing quantities of carbonylated proteins. Taken together, these results revealed an oxidative pathway model of RBCs storage, on which further investigation towards improved storage conditions will be based. -- Les concentrés érythrocytaires (CE) sont le produit sanguin le plus délivré au monde, permettant de traiter différentes formes d'anémies. En Suisse, les CE sont stocké à 4 °C pendant 42 jours dans une solution saline d'adénine, glucose et mannitol (SAGM). Une telle conservation induit des lésions de stockage qui altèrent le métabolisme, les protéines et les propriétés rhéologique du globule rouge (GR). Un débat important concerne l'impact du temps de stockage des CE sur les risques de réaction transfusionnelles, certaines études tentant de démontrer que des transfusions de sang vieux réduiraient l'espérance de vie des patients. Cependant, aucune association concrète n'a été prouvée à ce jour. Alors que les modifications du métabolisme et changement précoces des propriétés rhéologiques sont réversibles suite à la transfusion du CE, les protéines oxydées ne peuvent être réparées, et il est probable que de telles lésions affectent la qualité et l'efficacité des produits sanguins. In vivo, les GR sont constamment exposés à l'oxygène, et sont donc bien équipés pour résister aux lésions oxydatives. De plus, les complexes fonctionnels de proteasome 20S reconnaissent et dégradent les protéines modérément oxydées, et certaines protéines peuvent être éliminées par les microparticules. Cette thèse de doctorat est imbriquée dans un projet de recherche global ayant pour objectif la caractérisation des effets de la préparation et du stockage sur la qualité des GR. Evaluer les dommages oxydatifs du GR pendant le stockage est primordial pour comprendre les mécanismes de vieillissement des produits sanguin. Dans ce but, des recherches orientées redoxomique ont été conduites. Dans une première partie, l'oxydation des cystéines et la carbonylation des protéines sont évaluées par électrophorèse bidimensionnelle différentielle et par immunodétection de protéines dérivatisées. Ensuite, les protéines d'intérêt ainsi que les protéines carbonylées, purifiées par affinité, sont identifiées par spectrométrie de masse en tandem. Les protéines cibles de l'oxydation sont classées selon leur fonction moléculaire. Dans une troisième partie, l'activité protéolytique du protéasome 20S est suivie durant la période de stockage. L'impact du stress oxydant sur cette activité a été évalué en utilisant des protéines exogènes oxydées in vitro. Le potentiel rôle défensif de la microvesiculation a également été étudié par la quantification des protéines carbonylées éliminées. Dans ce travail, nous avons observé que différents groupes de protéines sont affectés par l'oxydation réversible ou irréversible de leurs cystéines. De plus, une diminution de la carbonylation en début de stockage dans les extraits solubles et une augmentation de la carbonylation après 4 semaines dans les extraits membranaires ont été montrées. Les fonctions moléculaires engagées par les protéines altérées montrent que les défenses antioxydantes sont oxydées de façon réversible sur leurs résidus cystéines, mais sont également irréversiblement carbonylées. Pendant ce temps, l'activité protéolytique du protéasome 20S décroit de 40 % en fin de stockage. L'incubation d'extraits de GR en début de stockage avec des protéines oxydées exogènes montre un effet inhibiteur « dose-dépendant » et « protéine-dépendant ». Enfin, les microvésicules s'avèrent éliminer des quantités croissantes de protéines carbonylées. La synthèse de ces résultats permet de modéliser une voie oxydative du stockage des GRs, à partir de laquelle de futures recherches seront menées avec pour but l'amélioration des conditions de stockage.
Resumo:
Several tumor necrosis factor receptor (TNFR) family members activate both the classical and the alternative NF-κB pathways. However, how a single receptor engages these two distinct pathways is still poorly understood. Using lymphotoxin β receptor (LTβR) as a prototype, we showed that activation of the alternative, but not the classical, NF-κB pathway relied on internalization of the receptor. Further molecular analyses revealed a specific cytosolic region of LTβR essential for its internalization, TRAF3 recruitment, and p100 processing. Interestingly, we found that dynamin-dependent, but clathrin-independent, internalization of LTβR appeared to be required for the activation of the alternative, but not the classical, NF-κB pathway. In vivo, ligand-induced internalization of LTβR in mesenteric lymph node stromal cells correlated with induction of alternative NF-κB target genes. Thus, our data shed light on LTβR cellular trafficking as a process required for specific biological functions of NF-κB.
Resumo:
A widely dispersed network of hypothalamic GnRH neurons controls the reproductive axis in mammals. Genetic investigation of the human disease model of isolated GnRH deficiency has revealed several key genes crucial for GnRH neuronal ontogeny and GnRH secretion. Among these genes, prokineticin 2 (PROK2), and PROK2 receptor (PROKR2) have recently emerged as critical regulators of reproduction in both mice and humans. Both prok2- and prokr2-deficient mice recapitulate the human Kallmann syndrome phenotype. Additionally, PROK2 and PROKR2 mutations are seen in humans with Kallmann syndrome, thus implicating this pathway in GnRH neuronal migration. However, PROK2/PROKR2 mutations are also seen in normosmic GnRH deficiency, suggesting a role for the prokineticin signaling system in GnRH biology that is beyond neuronal migration. This observation is particularly surprising because mature GnRH neurons do not express PROKR2. Moreover, mutations in both PROK2 and PROKR2 are predominantly detected in the heterozygous state with incomplete penetrance or variable expressivity frequently seen within and across pedigrees. In some of these pedigrees, a "second hit" or oligogenicity has been documented. Besides reproduction, a pleiotropic physiological role for PROK2 is now recognized, including regulation of pain perception, circadian rhythms, hematopoiesis, and immune response. Therefore, further detailed clinical studies of patients with PROK2/PROKR2 mutations will help to map the broader biological role of the PROK2/PROKR2 pathway and identify other interacting genes/proteins that mediate its molecular effects in humans.
Resumo:
BACKGROUND: Intrathecal analgesia and avoidance of perioperative fluid overload are key items within enhanced recovery pathways. Potential side effects include hypotension and renal dysfunction. STUDY DESIGN: From January 2010 until May 2010, all patients undergoing colorectal surgery within enhanced recovery pathways were included in this retrospective cohort study and were analyzed by intrathecal analgesia (IT) vs none (noIT). Primary outcomes measures were systolic and diastolic blood pressure, mean arterial pressure, and heart rate for 48 hours after surgery. Renal function was assessed by urine output and creatinine values. RESULTS: One hundred and sixty-three consecutive colorectal patients (127 IT and 36 noIT) were included in the analysis. Both patient groups showed low blood pressure values within the first 4 to 12 hours and a steady increase thereafter before return to baseline values after about 24 hours. Systolic and diastolic blood pressure and mean arterial pressure were significantly lower until 16 hours after surgery in patients having IT compared with the noIT group. Low urine output (<0.5 mL/kg/h) was reported in 11% vs 29% (IT vs noIT; p = 0.010) intraoperatively, 20% vs 11% (p = 0.387), 33% vs 22% (p = 0.304), and 31% vs 21% (p = 0.478) for postanesthesia care unit and postoperative days 1 and 2, respectively. Only 3 of 127 (2.4%) IT and 1 of 36 (2.8%) noIT patients had a transitory creatinine increase >50%; no patients required dialysis. CONCLUSIONS: Postoperative hypotension affects approximately 10% of patients within an enhanced recovery pathway and is slightly more pronounced in patients with IT. Hemodynamic depression persists for <20 hours after surgery; it has no measurable negative impact and therefore cannot justify detrimental postoperative fluid overload.
Resumo:
The main clinical features in four patients with IgG1k paraproteinaemia and acquired complement deficiency included xanthomatous skin lesions (in three), panniculitis (in three) and hepatitis (in two). Hypocomplementaemia concerned the early classical pathway components--in particular C1q. Metabolic studies employing 125I-C1q revealed a much faster catabolism of this protein in the four patients than in five normal controls and three patients with cryoglobulinaemia (mean fractional catabolic rates respectively: 23.35%/h; 1.44%/h; 5.84%/h). Various experiments were designed to characterize the mechanism of the hypocomplementaemia: the patients' serum, purified paraprotein, blood cells, bone marrow cells, or xanthomatous skin lesions did not produce significant complement activation or C1q binding. When three of the patients (two with panniculitis and hepatitis) were injected with 123I-C1q, sequential gamma-camera imaging demonstrated rapid accumulation of the radionuclide in the liver, suggesting that complement activation takes place in the liver where it could produce damage.
Resumo:
This article summarizes current concepts of the working memory with regard to its role within emotional coping strategies. In particular, it focuses on the fact that the limited capacity of the working memory to process now-relevant information can be turned into an advantage, when the individual is occupied by dealing with unpleasant emotion. Based on a phenomenon known as dual-task interference (DTI), this emotion can be chased by intense arousal due to clearly identifiable external stressors. Thus, risk perception might be used as a 'DTI inductor' that allows avoidance of unpleasant emotion. Successful mastery of risk adds a highly relevant dopaminergic component to the overall experience. The resulting mechanism of implicit learning may contribute to the development of a behavioural addiction. Besides its putative effects in the development of a behavioural addiction, the use of DTI might be of a more general interest for the clinical practice, especially in the field of psychotherapy. © 2013 S. Karger AG, Basel.
Resumo:
The latent membrane protein 1 (LMP1) encoded by the Epstein-Barr virus functions as a constitutively activated receptor of the tumor necrosis factor receptor family. LMP1 is a short-lived protein that is ubiquitinated and degraded by the proteasome. We have previously shown that LMP1 recruits the adapter protein tumor necrosis factor receptor-associated factor 3 (TRAF3) to lipid rafts. To test if TRAFs are involved in LMP1's ubiquitination, we have mutated the LMP1 CTAR1 site that has been identified as a TRAF binding site. We show that the CTAR1 mutant (CTAR1(-)) is expressed after transfection at a similar level to wild-type LMP1, and behaves as wild-type LMP1 with respect to membrane localization. However, CTAR1(-) does not bind TRAF3. We demonstrate that ubiquitination of CTAR1(-) is significantly reduced when compared to wild-type LMP1. In addition, the expression of wild-type LMP1 induces the ubiquitination, an effect that is significantly reduced when the CTAR1(-) is expressed. Taken together, our results suggest that TRAF proteins are involved in the ubiquitination of LMP1, and that their binding to LMP1 may facilitate their own ubiquitination.
Resumo:
Like many organisms the fungal pathogen Candida albicans senses changes in the environmental CO(2) concentration. This response involves two major proteins: adenylyl cyclase and carbonic anhydrase (CA). Here, we demonstrate that CA expression is tightly controlled by the availability of CO(2) and identify the bZIP transcription factor Rca1p as the first CO(2) regulator of CA expression in yeast. We show that Rca1p upregulates CA expression during contact with mammalian phagocytes and demonstrate that serine 124 is critical for Rca1p signaling, which occurs independently of adenylyl cyclase. ChIP-chip analysis and the identification of Rca1p orthologs in the model yeast Saccharomyces cerevisiae (Cst6p) point to the broad significance of this novel pathway in fungi. By using advanced microscopy we visualize for the first time the impact of CO(2) build-up on gene expression in entire fungal populations with an exceptional level of detail. Our results present the bZIP protein Rca1p as the first fungal regulator of carbonic anhydrase, and reveal the existence of an adenylyl cyclase independent CO(2) sensing pathway in yeast. Rca1p appears to regulate cellular metabolism in response to CO(2) availability in environments as diverse as the phagosome, yeast communities or liquid culture.
Resumo:
Neuronal hyperexcitability following peripheral nerve lesions may stem from altered activity of voltage-gated sodium channels (VGSCs), which gives rise to allodynia or hyperalgesia. In vitro, the ubiquitin ligase Nedd4-2 is a negative regulator of VGSC α-subunits (Na(v)), in particular Na(v)1.7, a key actor in nociceptor excitability. We therefore studied Nedd4-2 in rat nociceptors, its co-expression with Na(v)1.7 and Na(v)1.8, and its regulation in pathology. Adult rats were submitted to the spared nerve injury (SNI) model of neuropathic pain or injected with complete Freund's adjuvant (CFA), a model of inflammatory pain. L4 dorsal root ganglia (DRG) were analyzed in sham-operated animals, seven days after SNI and 48h after CFA with immunofluorescence and Western blot. We observed Nedd4-2 expression in almost 50% of DRG neurons, mostly small and medium-sized. A preponderant localization is found in the non-peptidergic sub-population. Additionally, 55.7±2.7% and 55.0±3.6% of Nedd4-2-positive cells are co-labeled with Na(v)1.7 and Na(v)1.8 respectively. SNI significantly decreases the proportion of Nedd4-2-positive neurons from 45.9±1.9% to 33.5±0.7% (p<0.01) and the total Nedd4-2 protein to 44%±0.13% of its basal level (p<0.01, n=4 animals in each group, mean±SEM). In contrast, no change in Nedd4-2 was found after peripheral inflammation induced by CFA. These results indicate that Nedd4-2 is present in nociceptive neurons, is downregulated after peripheral nerve injury, and might therefore contribute to the dysregulation of Na(v)s involved in the hyperexcitability associated with peripheral nerve injuries.
Resumo:
Optic pathway gliomas (OPG) are found in about 15% of patients with neurofibromatosis Type 1 (NF-1). The natural history of OPG is not yet well documented. Treatment in cases with growing tumors is still controversial. Twenty-one patients with NF-1 and OPG, diagnosed over a 20-year period, and followed neuroradiologically and ophthalmologically for at least two years, were reevaluated. The diagnosis of OPG was made at a mean age of 7.1 years (range 0-14.5 years); six children were asymptomatic, 15 were symptomatic. The mean follow-up was 9.0 years (2.0-18.5 (years). In eight initially operated or biopsied patients (three optic nerve and five chiasmal gliomas) tumor regrowth was found in one patient without progression on subsequent follow-up. Improvement of visual acuity occurred in one child after operation of a large suprasellar tumor and deterioration in one patient after biopsy of a chiasmal glioma. The neuroradiological follow-up of the 13 not-operated and not-radiated patients (four optic nerve and nine chiasmal gliomas) was stable in 10, progressive in three, resulting in visual loss in one patient. In 11 children (52%) a second tumor outside the optic pathway was found at a mean age of 4.0 years after the diagnosis of an OPG. Until now they are mostly asymptomatic. Second site tumors were operated in two children because of rapid tumor growth, one child died of a brainstem tumor. OPG are a frequent complication in children with NF-1, appearing within the first decade.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Regulation of the epithelial Na(+) channel (ENaC) by ubiquitylation is controlled by the activity of two counteracting enzymes, the E3 ubiquitin-protein ligase Nedd4-2 (mouse ortholog of human Nedd4L) and the ubiquitin-specific protease Usp2-45. Previously, Usp2-45 was shown to decrease ubiquitylation and to increase surface function of ENaC in Xenopus laevis oocytes, whereas the splice variant Usp2-69, which has a different N-terminal domain, was inactive toward ENaC. It is shown here that the catalytic core of Usp2 lacking the N-terminal domain has a reduced ability relative to Usp2-45 to enhance ENaC activity in Xenopus oocytes. In contrast, its catalytic activity toward the artificial substrate ubiquitin-AMC is fully maintained. The interaction of Usp2-45 with ENaC exogenously expressed in HEK293 cells was tested by coimmunoprecipitation. The data indicate that different combinations of ENaC subunits, as well as the α-ENaC cytoplasmic N-terminal but not C-terminal domain, coprecipitate with Usp2-45. This interaction is decreased but not abolished when the cytoplasmic ubiquitylation sites of ENaC are mutated. Importantly, coimmunoprecipitation in HEK293 cells and GST pull-down of purified recombinant proteins show that both the catalytic domain and the N-terminal tail of Usp2-45 physically interact with the HECT domain of Nedd4-2. Taken together, the data support the conclusion that Usp2-45 action on ENaC is promoted by various interactions, including through binding to Nedd4-2 that is suggested to position Usp2-45 favorably for ENaC deubiquitylation.