204 resultados para Transfert western
Resumo:
This article analyses rates and correlates of homicide in 15 West European countries from 1960 to 2010. The results show that the levels of homicide in 2010 and the trends in homicide from 1960 to 2010 are not related to any of the traditional demographic and socioeconomic predictors of crime. Homicide victimization rates show an increase from the mid-1960s until the early 1990s, and a decrease since then. Victims of both genders and all group ages follow the same trend, except in the case of infanticide, which decreased during the whole period. These results do not support the hypothesis of a homicide trend driven by the evolution of victimization of young men in public space. The authors propose an explanation based on a lifestyle approach.
Resumo:
The delta(18)O, delta(13)C and Sr-87/Sr-86 values of calcite and organic matter were measured for carbonate mylonites from numerous thrusts in the Helvetic Alps. Carbonate mylonites in most of the thrusts retain essentially unaltered protolith delta(18)O and delta(13)C values, consistent with there having been little to no advection of isotopically distinct fluid through these faults. Only carbonate mylonites from the basal thrusts of the largest nappes have delta(18)O and/or delta(13)C values that differ from those of their protoliths. The zone of isotopic alteration/exchange is confined to c. 10 to 20 meters of these fault contacts. We propose the fluids that migrated through these faults contained variable amounts of organically derived carbon and radiogenic strontium, and were probably derived from dewatering of the sedimentary rocks and prograde metamorphic reactions in the nappes' root zones. Apart from the basal thrusts of the largest nappes that behaved as narrow, laterally extensive conduits for fluids, there is little isotopic evidence that large quantities of fluids passed through most of the carbonate-hosted thrusts in the Helvetic Alps.
Resumo:
Résumé : L'arc volcanique du sud de l'Amérique Centrale se situe sur la marge SW de la Plaque Caraïbe, au-dessus des plaques subduites de Cocos et Nazca. Il s'agit de l'un des arcs intra-océaniques les plus étudiés au monde, qui est généralement considéré comme s'étant développé à la fin du Crétacé le long d'un plateau océanique (le Plateau Caraïbe ou CLIP) et se trouvant actuellement dans un régime de subduction érosive. Au cours des dernières décennies, des efforts particuliers ont été faits pour comprendre les processus liés à la subduction sur la base d'études géophysiques et géochimiques. Au sud du Costa Rica et à l'ouest du Panama, des complexes d'accrétions et structures à la base de l'arc volcanique ont été exposés grâce à la subduction de rides asismiques et de failles transformantes. Des affleurements, situés jusqu'à seulement 15 km de la fosse, offrent une possibilité unique de mieux comprendre quelques uns des processus ayant lieu le long de la zone de subduction. Nous présentons de nouvelles contraintes sur l'origine de ces affleurements en alliant une étude de terrain poussée, de nouvelles données géochimiques, sédimentaires et paléontologiques, ainsi que des observations structurales effectuées en télédétection. Une nouvelle stratigraphie tectonique entre le Campanien et l'Éocène est définie pour la région d'avant-arc située entre la Péninsule d'Osa (Costa Rica) et la Péninsule d'Azuero (Panama). Nos résultats montrent que la partie externe de la marge est composée d'un arrangement complexe de roches ignées et de séquences sédimentaires de recouvrement qui comprennent principalement le socle de l'arc, des roches d'arc primitif, des fragments de monts sous-marins accrétés et des mélanges d'accrétion. Des preuves sont données pour le développement de l'arc volcanique du sud de l'Amérique Centrale sur un plateau océanique. Le début de la subduction le long de la marge SW de la Plaque Caraïbe a eu lieu au Campanien et a généré des roches d'arc primitif caractérisées par des affinités géochimiques particulières, globalement intermédiaires entre des affinités de plateau et d'arc insulaire. L'arc était mature au Maastrichtien et formait un isthme essentiellement continu entre l'Amérique du Nord et l'Amérique du Sud. Ceci a permis la migration de faunes terrestres entre les Amériques et pourrait avoir contribué à la crise fin Crétacé -Tertiaire en réduisant les courants océaniques subéquatoriaux entre le Pacifique et l'Atlantique. Plusieurs unités composées de fragments de monts sous-marins accrétés sont définies. La nature et l'arrangement structural de ces unités définissent de nouvelles contraintes sur les modes d'accrétion des monts sous-marins/îles océaniques et sur l'évolution de la marge depuis la formation de la zone de subduction. Entre la fin du Crétacé et l'Éocène moyen, la marge a enregistré plusieurs épisodes ponctuels d'accrétion de monts sous-marins alternant avec de la subduction érosive. A l'Éocène moyen, un événement tectonique régional pourrait avoir causé un fort couplage entre les plaques supérieure et inférieure, menant à des taux plus important d'accrétion de monts sous-marins. Durant cette période, la situation le long de la marge était très semblable à la situation actuelle et caractérisée par la présence de monts sous-marins subductants et l'absence d'accrétion de sédiments. L'enregistrement géologique montre qu'il n'est pas possible d'attribuer une nature érosive ou accrétionnaire à la marge dans le passé ou -par analogie- aujourd'hui, parce que (1) les processus d'accrétion et érosifs varient fortement spatialement et temporellement et (2) il est impossible d'évaluer la quantité exacte de matériel tectoniquement enlevé à la marge depuis le début de la subduction. Au sud du Costa Rica, certains fragments de monts sous-marins accrétés sont représentatifs d'une interaction entre une ride et un point chaud dans le Pacifique au Crétacé terminal/Paléocène. L'existence de ces fragments de monts sous-marins et la morphologie du fond de l'Océan Pacifique indiquent que la formation de la ride de Cocos-Nazca s'est formée au moins ~40 Ma avant l'âge proposé par les modèles tectoniques actuels. Au Panama, nous avons identifié une île océanique d'âge début Éocène qui a été accrétée à l'Éocène moyen. L'accrétion a eu lieu à très faible profondeur par détachement de l'île dans la fosse, et a mené à une exceptionnelle préservation des structures volcaniques. Des affleurement comprenant aussi bien des parties basses et hautes de l'édifice volcanique on été étudiées, depuis la phase sous-marine bouclier jusqu'à la phase subaérienne post-bouclier. La stratigraphie nous a permis de différencier les laves de la phase sous-marine de celles de la phase subaérienne. La composition des laves indique une diminution progressive de l'intensité de la fusion partielle de la source et une diminution de la température des laves produites durant les derniers stades de l'activité volcanique. Nous interprétons ces changements comme étant liés à l'éloignement progressif de l'île océanique de la zone de fusion ou point chaud. Abstract The southern Central American volcanic front lies on the SW edge of the Caribbean Plate, inboard of the subducting Cocos and Nazca Plates. It is one of the most studied intra-oceanic convergent margins around the world, which is generally interpreted to have developed in the late Cretaceous along an oceanic plateau (the Caribbean Large Igneous Province or CLIP) and to be currently undergoing a regime of subduction erosion. In the last decades a particular effort has been made to understand subduction-related processes on the basis of geophysical and geochemical studies. In southern Costa Rica and western Panama accretionary complexes and structures at the base of the volcanic front have been exposed in response to subduction of aseismic ridges and transforms. Onland exposures are located as close as to 15 km from the trench and provide a unique opportunity to better understand some of the processes occurring along the subduction zone. We provide new constraints on the origins of these exposures by integrating a comprehensive field work, new geochemical, sedimentary and paleontological data, as well as structural observations based on remote imaging. A new Campanian to Eocene tectonostratigraphy is defined for the forearc area located between the Osa Peninsula (Costa Rica) and the Azuero Peninsula (Panama). Our results show that the outer margin is composed of a complicated arrangement of igneous complexes and overlapping sedimentary sequences that essentially comprise an arc basement, primitive island-arc rocks, accreted seamount fragments and accretionary mélanges. Evidences are provided for the development of the southern Central American arc on the top an oceanic plateau. The subduction initiation along the SW edge of the Caribbean Plate occurred in the Campanian and led to formation of primitive island-arc rocks characterized by unusual geochemical affinities broadly intermediate between plateau and arc affinities. The arc was mature in the Maastrichtian and was forming a predominantly continuous landbridge between the North and South Americas. This allowed migration of terrestrial fauna between the Americas and may have contributed to the Cretaceous-Tertiary crisis by limiting trans-equatorial oceanic currents between the Pacific and the Atlantic. Several units composed of accreted seamount fragments are defined. The nature of the units and their structural arrangement provide new constraints on the modes of accretion of seamounts/oceanic islands and on the evolution of the margin since subduction initiation. Between the late Cretaceous and the middle Eocene, the margin recorded several local episodes of seamount accretion alternating with tectonic erosion. In the middle Eocene a regional tectonic event may have triggered strong coupling between the overriding and subducting plates, leading to higher rates of seamount accretion. During this period the situation along the margin was very similar to the present and characterized by subducting seamounts and absence of sediment accretion. The geological record shows that it is not possible to ascribe an overall erosive or accretionary nature to the margin in the past and, by analogy, today, because (1) accretionary and erosive processes exhibit significant lateral and temporal variations and (2) it is impossible to estimate the exact amount of material tectonically eroded from the margin since subduction initiation. In southern Costa Rica, accreted seamount fragments point toward a plume-ridge interaction in the Pacific in the late Cretaceous/Paleocene. This occurrence of accreted seamount fragments and morphology of the Pacific Ocean floor is indicative of the formation of the Cocos-Nazca spreading system at least ~40 Ma prior to the age proposed in current tectonic models. In Panama, we identified a remarkably-well preserved early Eocene oceanic island that accreted in the middle Eocene. The accretion probably occurred at very shallow depth by detachment of the island in the trench and led to an exceptional preservation of the volcanic structures. Exposures of both deep and superficial parts of the volcanic edifice have been studied, from the submarine-shield to subaerial-postshield stages. The stratigraphy allowed us to distinguish lavas produced during the submarine and subaerial stages. The lava compositions likely define a progressive diminution of source melting and a decrease in the temperature of erupted melts in the latest stages of volcanic activity. We interpret these changes to primarily reflect the progressive migration of the oceanic island out of the melting region or hotspot.
Resumo:
Indirect topographic variables have been used successfully as surrogates for disturbance processes in plant species distribution models (SDM) in mountain environments. However, no SDM studies have directly tested the performance of disturbance variables. In this study, we developed two disturbance variables: a geomorphic index (GEO) and an index of snow redistribution by wind (SNOW). These were developed in order to assess how they improved both the fit and predictive power of presenceabsence SDM based on commonly used topoclimatic (TC) variables for 91 plants in the Western Swiss Alps. The individual contribution of the disturbance variables was compared to TC variables. Maps of models were prepared to spatially test the effect of disturbance variables. On average, disturbance variables significantly improved the fit but not the predictive power of the TC models and their individual contribution was weak (5.6% for GEO and 3.3% for SNOW). However their maximum individual contribution was important (24.7% and 20.7%). Finally, maps including disturbance variables (i) were significantly divergent from TC models in terms of predicted suitable surfaces and connectivity between potential habitats, and (ii) were interpreted as more ecologically relevant. Disturbance variables did not improve the transferability of models at the local scale in a complex mountain system, and the performance and contribution of these variables were highly species-specific. However, improved spatial projections and change in connectivity are important issues when preparing projections under climate change because the future range size of the species will determine the sensitivity to changing conditions.
Resumo:
The use of herbicides in agriculture may lead to environmental problems, such as surface water pollution, with a potential risk for aquatic organisms. The herbicide glyphosate is the most used active ingredient in the world and in Switzerland. In the Lavaux vineyards it is nearly the only molecule applied. This work aimed at studying its fate in soils and its transfer to surface waters, using a multi-scale approach: from molecular (10-9 m) and microscopic scales (10-6 m), to macroscopic (m) and landscape ones (103 m). First of all, an analytical method was developed for the trace level quantification of this widely used herbicide and its main by-product, aminomethylphosphonic acid (AMPA). Due to their polar nature, their derivatization with 9-fluorenylmethyl chloroformate (FMOC-Cl) was done prior to their concentration and purification by solid phase extraction. They were then analyzed by ultra performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). The method was tested in different aqueous matrices with spiking tests and validated for the matrix effect correction in relevant environmental samples. Calibration curves established between 10 and 1000ng/l showed r2 values above 0.989, mean recoveries varied between 86 and 133% and limits of detection and quantification of the method were as low as 5 and 10ng/l respectively. At the parcel scale, two parcels of the Lavaux vineyard area, located near the Lutrive River at 6km to the east of Lausanne, were monitored to assess to which extent glyphosate and AMPA were retained in the soil or exported to surface waters. They were equipped at their bottom with porous ceramic cups and runoff collectors, which allowed retrieving water samples for the growing seasons 2010 and 2011. Results revealed that the mobility of glyphosate and AMPA in the unsaturated zone was likely driven by the precipitation regime and the soil characteristics, such as slope, porosity structure and layer permeability discrepancy. Elevated glyphosate and AMPA concentrations were measured at 60 and 80 cm depth at parcel bottoms, suggesting their infiltration in the upper parts of the parcels and the presence of preferential flow in the studied parcels. Indeed, the succession of rainy days induced the gradual saturation of the soil porosity, leading to rapid infiltration through macropores, as well as surface runoff formation. Furthermore, the presence of more impervious weathered marls at 100 cm depth induced throughflows, the importance of which for the lateral transport of the herbicide molecules was determined by the slope steepness. Important rainfall events (>10 mm/day) were clearly exporting molecules from the soil top layer, as indicated by important concentrations in runoff samples. A mass balance showed that total loss (10-20%) mainly occurred through surface runoff (96%) and, to a minor extent, by throughflows in soils (4%), with subsequent exfiltration to surface waters. Observations made in the Lutrive River revealed interesting details of glyphosate and AMPA dynamics in urbanized landscapes, such as the Lavaux vineyards. Indeed, besides their physical and chemical properties, herbicide dynamics at the catchment level strongly depend on application rates, precipitation regime, land use and also on the presence of drains or constructed channels. Elevated concentrations, up to 4970 ng/l, observed just after the application, confirmed the diffuse export of these compounds from the vineyard area by surface runoff during main rain events. From April to September 2011, a total load of 7.1 kg was calculated, with 85% coming from vineyards and minor urban sources and 15% from arable crops. Small vineyard surfaces could generate high concentrations of herbicides and contribute considerably to the total load calculated at the outlet, due to their steep slopes (~10%). The extrapolated total amount transferred yearly from the Lavaux vineyards to the Lake of Geneva was of 190kg. At the molecular scale, the possible involvement of dissolved organic matter (DOM) in glyphosate and copper transport was studied using UV/Vis fluorescence spectroscopy. Combined with parallel factor (PARAFAC) analysis, this technique allowed characterizing DOM of soil and surface water samples from the studied vineyard area. Glyphosate concentrations were linked to the fulvic-like spectroscopic signature of DOM in soil water samples, as well as to copper, suggesting the formation of ternary complexes. In surface water samples, its concentrations were also correlated to copper ones, but not in a significant way to the fulvic-like signature. Quenching experiments with standards confirmed field tendencies in the laboratory, with a stronger decrease in fluorescence intensity for fulvic-like fluorophore than for more aromatic ones. Lastly, based on maximum concentrations measured in the river, an environmental risk for these compounds was assessed, using laboratory tests and ecotoxicity data from the literature. In our case and with the methodology applied, the risk towards aquatic species was found negligible (RF<1).
Resumo:
Abstract The giant hogweed (Heracleum mantegazzianum) has successfully invaded 19 European countries as well as parts of North America. It has become a problematic species due to its ability to displace native flora and to cause public health hazards. Applying population genetics to species invasion can help reconstruct invasion history and may promote more efficient management practice. We thus analysed levels of genetic variation and population genetic structure of H. mantegazzianum in an invaded area of the western Swiss Alps as well as in its native range (the Caucasus), using eight nuclear microsatellite loci together with plastid DNA markers and sequences. On both nuclear and plastid genomes, native populations exhibited significantly higher levels of genetic diversity compared to invasive populations, confirming an important founder event during the invasion process. Invasive populations were also significantly more differentiated than native populations. Bayesian clustering analysis identified five clusters in the native range that corresponded to geographically and ecologically separated groups. In the invaded range, 10 clusters occurred. Unlike native populations, invasive clusters were characterized by a mosaic pattern in the landscape, possibly caused by anthropogenic dispersal of the species via roads and direct collection for ornamental purposes. Lastly, our analyses revealed four main divergent groups in the western Swiss Alps, likely as a consequence of multiple independent establishments of H. mantegazzianum.
Resumo:
New geochronological data which clarify the timing of syn-orogenic magmatism and regional metamorphism in the Connemara Dalradian are presented. U-Pb zircon data on four intermediate to acid foliated magmatic rocks show important inherited components but the most concordant fractions demonstrate that major magmatism continued until 465 Ma whereas the earliest, basic magmatism has been dated previously at 490 Ma; a fine-grained, fabric-cutting granite contains discordant zircons which also appear to be 465 Ma old. Are magmatism in Connemara therefore spanned a period of at least 25 Ma. Recent U-Pb data on titanite from central Connemara which gave a peak metamorphic age of 478 Ma are supplemented by U-Pb data on titanite and monazite from metamorphic veins in the east of Connemara which indicate that low-P, high-T regional metamorphism ism continued there to 465 Ma, i.e. at least 10 Ma later than in the central region dated previously. New Rb-Sr data on muscovites from coarse-grained segregations in different structural settings range from 475 to 435 Ma; in part this range probably also reflects differences in age from west to east, with three ages close to 455 Ma from the eastern area, which is also the site of the lowest pressure metamorphism. Thermal modelling indicates that at any one locality the duration of metamorphism was probably as little as 1-2 Ma. The new dates emphasize the complexity in the spatial and temporal distribution of high-level regional metamorphism caused by magmatic activity. The relatively simple overall distribution of mineral-appearance isograds revealed by regional mapping masks the complexity of a prolonged but punctuated metamorphic history related to multiple intrusions, primarily in the southern part of Connemara. The later stages of magmatic activity followed progressive uplift and erosion after the onset of magmatism, and were localized in the eastern part of the region.
Resumo:
As a result of recent deep reflection and refraction seismology the crustal structure of the Western Alps is now quite well-defined. However, this raises the question of what is present below the Moho, such as a crustal eclogitic root. This study attempts to estimate the volume of this eclogitic root on the basis of palinspastic reconstructions. Even with a minimum estimate of the crustal material involved in the subduction processes which took place during the Alpine orogeny, a significant eclogitized crustal root must be present down to depths of around 100 km below the Po plain. A maximum estimate suggests that a large part of this root could now be recycled in the asthenosphere.
Resumo:
The Paratethys evolved as a marginal sea during the Alpine-Himalayan orogeny in the Oligo-Miocene. Sediments from the northern Alpine Molasse Basin, the Vienna, and the Pannonian Basins located in the western and central part of the Paratethys thus provide unique information on regional changes in climate and oceanography during a period of active Alpine uplift Oxygen isotope compositions of well-preserved phosphatic fossils recovered from the sediments support deposition under sub-tropical to warm-temperate climate with water temperatures of 14 to 28 degrees C for the Miocene. delta(18)O values of fossil shark teeth are similar to those reported for other Miocene marine sections and, using the best available estimates of their biostratigraphic age, show a variation until the end of the Badenian similar to that reported for composite global record. The (87)Sr/(86)Sr isotope ratios of the fossils follow the global Miocene seawater trend, albeit with a much larger scatter. The deviations of (87)Sr/(86)Sr in the samples from the well-constrained seawater curve are interpreted as due to local input of terrestrially-derived Sr. Contribution of local sources is also reflected in the epsilon(Nd) values, consistent with input from ancient crystalline rocks (e.g., Bohemian Massif and/or Mesozoic sediments with epsilon(Nd) < -9. On the other hand, there is evidence for input from areas with Neogene volcanism as suggested by samples with elevated epsilon(Nd) values >-7. Excluding samples showing local influence on the water column, an average epsilon(Nd) value of -7.9 +/- 0.5 may be inferred for the Miocene Paratethys. This value is indistinguishable from the epsilon(Nd) value of the contemporaneous Indian Ocean, supporting a dominant role of this ocean in the Western and Central Paratethys. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This work presents geochemistry and structural geology data concerning the low enthalpy geothermal circuits of the Argentera crystalline Massif in northwestern Italian Alps. I n this area some thermal springs (50-60 degreesC), located in the small Bagni di Vinadio village, discharge mixtures made up of a Na-Cl end-member and a Na-SO4 component. The latter is also discharged by the thermal springs of Terme di Valdieri located some kilometres apart within the same tectonic complex. Both end-members share the same meteoric origin and the same reservoir temperature, which is close to 150 degreesC. Explanations are thus required to understand how they reach the surface and how waters of the same origin and circulating in similar rocks can attain such different compositions. Sodium-sulphate waters discharged at both sites, likely represent the common interaction product of meteoric waters with the widespread granitic-migmatitic rocks of the Argentera Massif, whereas Na-CI waters originate through leaching of mineralised cataclastic rocks, which are rich in phyllosilicatic minerals and fluid inclusions, both acting as Cl- sources. Due to the relatively low inferred geothermal gradient of the region, -25C/km, meteoric waters have to descend to depths of 5.5-6 km to attain temperatures of similar to 150 degreesC. These relevant depths can be reached by descending meteoric waters, due to the recent extensional stress field, which allows the development of geothermal circulations at greater depths than in other sectors of the Alps by favouring a greater fractures aperture. The ascent of the thermal waters rakes place along brittle shear zones. In both sites, the thermal waters emerge at the bottoms of the valleys, close to either the lateral termination of a brittle shear zone at Terme di Valdieri, or a step-over between two en-echelon brittle shear zones at Bagni di Vinadio. These observations attest to a strong control operated on the location of outlet regions by both brittle tectonics and the minima in hydraulic potential inside the fractured massif.
Resumo:
The aim of this paper was to investigate the possible connections between ammonite faunal turnover and the eustatic events recorded in Tethyan sequences during the middle Toarcian/early Bajocian time interval. For this we have analysed the biostratigraphic ranges, at the subzone level, of approximately 600 ammonite species belonging to 160 genera from several selected sections of the western Tethys (Mediterranean and Submediterranean provinces). The analysis of taxon ranges enabled us to plot curves for ammonite faunal turnovers, inter-subzonal distance, and diversity. Comparing the mentioned curves with Tethyan sequences [Hardenbol et al., 19981, we find that sea-level changes correlate well with origination and extinction events and faunal diversity. Most of the faunal turnovers correlate with stratigraphic events. Extinction events with their corresponding decrease in diversity correlate with regressive intervals and with major or minor sequence boundaries. Origination events and their corresponding increase in diversity were clearly connected with transgressions in Tethyan sequences. In several cases, the major sequence boundary and the subsequent transgressive phase correlate with major ammonite faunal turnover, whereas minor or medium sequence boundaries generally gave rise to minor or medium turnovers.
Resumo:
Résumé Cette étude porte sur le flanc inverse de la nappe de Siviez-Mischabel et sur les unités tectoniques sous jacentes (zone de Stalden supérieur et zone Houillère) dans la vallée menant à Zermatt. L'étude structurale du granite permien de Randa (orthogneiss oeillé) permet de mieux comprendre les effets de la déformation alpine sur les roches de socle. La cartographie détaillée de l'orthogneiss et de son encaissant, ainsi que l'étude lithostratigraphique des terrains sédimentaires associés permettent de proposer un schéma structural et cinématique du flanc inverse de la nappe de Siviez-Mischabel et de mieux comprendre ses relations avec les unités tectoniques sous-jacentes. L'analyse structurale de l'orthogneiss de Randa et de son encaissant révèle la superposition de plusieurs phases de déformation ductile. Cet orthogneiss formé sous des conditions métamorphiques du faciès schiste vert possède une forte schistosité alpine avec au moins deux linéations d'extension. La première, L1, orientée NW-SE est associée à la mise en place de la nappe. La seconde, L2, orientée SW-NE, se corrèle au cisaillement ductile du Simplon. La quantification de la déformation au moyen de la méthode de Fry sur les faciès porphyriques donne des ellipses à rapports axiaux compris entre 1.9 et 5.3, en accord avec les valeurs obtenues par d'autres marqueurs {tourmalines étirées, fibres). Les valeurs mesurées parallèlement à L1 ou L2 sont très semblables. La méthode de Fry a nécessité une étude théorique préalable afin de vérifier son applicabilité aux orthogneiss oeillés. La méthode requiert une distribution spatiale homogène et isotrope des marqueurs utilisés. Les tests statistiques effectués ont révélé que les phénocristaux de feldspath alcalin satisfont à cette condition et qu'ils peuvent être utilisés comme marqueur de la déformation au moyen de la méthode de Fry. Les valeurs obtenues révèlent l'importance du cisaillement ductile du Simplon sur la géométrie de la nappe dans la région d'étude. Le levé cartographique a permis d'améliorer la lithostratigraphie de la base de la nappe de Siviez-Mischabel. Trois formations en position renversée peuvent être observées sous les gneiss formant le coeur de la nappe. Ces trois formations forment le coeur du synclinal de St-Niklaus qui connecte la nappe de Siviez-Mischabel à la zone de Stalden supérieur. La datation par U-Pb de zircons détritiques et magmatiques par LA-ICP-MS permet de contraindre l'âge des formations observées (probablement Carbonifère à Trias précoce). Ces données ont des répercussions importantes sur la structure de la nappe dans la région, prouvant l'existence de plusieurs plis avec des séries normales et renversées bien préservées. La définition et la datation de ces formations, ainsi que leur identification dans la-Zone- Houillère avoisinante permettent de mieux comprendre la géométrie initiale et les relations tectoniques des nappes du Pennique moyen dans la vallée de Zermatt. Summary This study investigates the overturned limb of the Siviez-Mischabel nappe and underlying tectonic units (Upper Stalden zone and Houillère zone) in the Mattertal area. Detailed structural analysis in the Permian Randa granite (augen orthogneiss) allows a better understanding of the Alpine deformation effects on basement rocks. Detailed mapping of this orthogneiss and surrounding rocks, and the study of the lithostratigraphy in the related sedimentary horizons allow the proposition of a structural and kinematic model for the overturned limb of the Siviez-Mischabel and to better understand the relations with the underlying tectonic units. The structural analysis of the Randa orthogneiss and surrounding rocks revealed the superposition of several phases of ductile deformation. This orthogneiss formed under greenschist facies metamorphic conditions displays a strong Alpine foliation with at least two stretching lineations. The first lineation, L1, is oriented NW-SE and is related to the nappe emplacement northward. The second one, L2, is related to the Simplon ductile shear zone. Strain estimation using the Fry method has been performed on porphyritic facies of the Randa orthogneiss. The obtained ellipses have axial ratios varying between 1.9 and 5.3, in agreement with strain estimation obtained from other markers (stretched turmalines, fringes). The strain values are very similar if measured parallel to L1 or to L2. A theoretical approach was necessary to verify the relevant application of the Fry method to augen orthogneiss. This method requires that the distribution of the used markers has to be homogeneous and isotropic. Statistical tests have been done and revealed that K-feldspar phenocrysts satisfy these conditions and can be used as strain markers with the Fry method. The obtained strain measurements revealed the importance of the Simplon ductile shear zone on the geometry of the nappe in the studied area. Mapping has improved the lithostratigraphy at the base of the Siviez-Mischabel nappe. Three overturned formations can be observed below the gneisses forming the core of the nappe. These three formations form the St-Niklaus syncline, which connects the Siviez-Mischabel nappe to the underlying Upper Stalden zone. U-Pb dating of detrital and magmatic zircons by LA-ICPMS allowed the age of the observed formations to be constrained (presumably Carboniferous to Early Triassic). This data has critical implications for nappe structure in the region, composed of few recumbent folds with well preserved normal and overturned limbs. The definition and dating of these formations, as well as their identification in the adjacent "Houillère Zone" improve the understanding of the geometry and tectonic relations of the Middle Penninic nappes in the Mattertal.