156 resultados para SPINAL-CORDS
Resumo:
Although vertebroplasty was initially a treatment of vertebral haemangioma or metastases, this procedure is now frequent option to the treatment of osteoporotic vertebral fractures. In this review article, we will discuss the indication, the techniques and the follow-up of the vertebroplasty. This is a risky procedure, which should be performed by experimented physicians working with high-resolution fluoroscopic equipments, by biplane fluoroscopy, to reduce the risk and irradiation to the patient. According to the available follow-up studies, there is clear evidence of a strong improvement of quality of life after vertebroplasty by rapid decreasing of back pain at least during the first six months. Other new studies will analyze the long-term follow-up after vertebroplasty.
Resumo:
Immunoreactivity to calbindin D-28k, a vitamin D-dependent calcium-binding protein, is expressed by neuronal subpopulations of dorsal root ganglia (DRG) in the chick embryo. To determine whether the expression of this phenotypic characteristic is maintained in vitro and controlled by environmental factors, dissociated DRG cell cultures were performed under various conditions. Subpopulations of DRG cells cultured at embryonic day 10 displayed calbindin-immunoreactive cell bodies and neurites in both neuron-enriched or mixed DRG cell cultures. The number of calbindin-immunoreactive ganglion cells increased up to 7-10 days of culture independently of the changes occurring in the whole neuronal population. The presence of non-neuronal cells, which promotes the maturation of the sensory neurons, tended to reduce the percentage of calbindin-immunoreactive cell bodies. Addition of horse serum enhanced both the number of calbindin-positive neurons and the intensity of the immunostaining, but does not prevent the decline of the subpopulation of calbindin-immunoreactive neurons during the second week of culture; on the contrary, the addition of muscular extract to cultures at 10 days maintained the number of calbindin-expressing neurons. While calbindin-immunoreactive cell bodies grown in culture were small- or medium-sized, no correlation was found between cell size and immunostaining density. At the ultrastructural level, the calbindin immunoreaction was distributed throughout the neuroplasm. These results indicate that the expression of calbindin by sensory neurons grown in vitro may be modulated by horse serum-contained factors or interaction with non-neuronal cells. As distinct from horse serum, muscular extract is able to maintain the expression of calbindin by a subpopulation of DRG cells.
Resumo:
The neurogenic shock is a common complication of spinal cord injury, especially when localized at the cervical level. Characterized by a vasoplegia (hypotension) and bradycardia, the neurogenic shock is secondary to the damage of the sympathetic nervous system. The clinical presentation often includes tetraplegia, with or without respiratory failure. Early treatment aims to minimize the occurrence of secondary spinal cord lesions resulting from systemic ischemic injuries. Medical management consists in a standardized ABCDE approach, in order to stabilize vital functions and immobilize the spine. The hospital care includes performing imaging, further measures of neuro-resuscitation, and coordinated surgical assessment and treatment of any other injury.
Resumo:
OBJECT Monoenergetic imaging with dual-energy CT has been proposed to reduce metallic artifacts in comparison with conventional polychromatic CT. The purpose of this study is to systematically evaluate and define the optimal dual-energy CT imaging parameters for specific cervical spinal implant alloy compositions. METHODS Spinal fixation rods of cobalt-chromium or titanium alloy inserted into the cervical spine section of an Alderson Rando anthropomorphic phantom were imaged ex vivo with fast-kilovoltage switching CT at 80 and 140 peak kV. The collimation width and field of view were varied between 20 and 40 mm and medium to large, respectively. Extrapolated monoenergetic images were generated at 70, 90, 110, and 130 kiloelectron volts (keV). The standard deviation of voxel intensities along a circular line profile around the spine was used as an index of the magnitude of metallic artifact. RESULTS The metallic artifact was more conspicuous around the fixation rods made of cobalt-chromium than those of titanium alloy. The magnitude of metallic artifact seen with titanium fixation rods was minimized at monoenergies of 90 keV and higher, using a collimation width of 20 mm and large field of view. The magnitude of metallic artifact with cobalt-chromium fixation rods was minimized at monoenergies of 110 keV and higher; collimation width or field of view had no effect. CONCLUSIONS Optimization of acquisition settings used with monoenergetic CT studies might yield reduced metallic artifacts.
Resumo:
Spinal cord compression due to cervical exostoses is a rare but recognized complication of hereditary multiple exostosis (HME), an autosomal dominant disorder. This disease, also called multiple osteochondromatosis, is characterised by osteocartilaginous exostoses, typically involving the juxtaepiphyseal regions of long bones. Complications such as transformation to sarcoma (1 to 5%) or neurological compression (of the spinal cord, 1 to 9%) can arise during the course of the disease. We report the case of a 64-year-old man with progressive difficulties in walking over many years, ascribed to congenital rachitism. A diagnosis of HME was not made until late in the disease course. Investigations revealed cervical myelopathy due to vertebral exostosis as well as multiple exostoses in other sites. His gait was not improved after surgical decompression. A better knowledge of this disease could have prevented this neurological complication.
Resumo:
Neurofilament (NF) proteins consist of three subunits of different molecular weights defined as NF-H, NF-M, and NF-L. They are typical structures of the neuronal cytoskeleton. Their immunocytochemical distribution during postnatal development of cat cerebellum was studied with several monoclonal and polyclonal antibodies against phosphorylated or unmodified sites. Expression and distribution of the triplet neurofilament proteins changed with maturation. Afferent mossy and climbing fibers in the medullary layer contained NF-M and NF-L already at birth, whereas NF-H appeared later. Within the first three postnatal weeks, all three subunits appeared in mossy and climbing fibers in the internal granular and molecular layers and in the axons of Purkinje cells. Axons of local circuit neurons such as basket cells expressed these proteins at the end of the first month, whereas parallel fibers expressed them last, at the beginning of the third postnatal month. Differential localization was especially observed for NF-H. Depending on phosphorylation, NF-H proteins were found in different axon types in climbing, mossy, and basket fibers or additionally in parallel fibers. A nonphosphorylated NF-H subunit was exclusively located in some Purkinje cells at early developmental stages and in some smaller interneurons later. A novel finding is the presence of a phosphorylation site in the NF-H subunit that is localized in dendrites of Purkinje cells but not in axons. Expression and phosphorylation of the NF-H subunit, especially, is cell-type specific and possibly involved in the adult-type stabilization of the axonal and dendritic cytoskeleton.