238 resultados para Receptor, ErbB-3


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several tumor necrosis factor receptor (TNFR) family members activate both the classical and the alternative NF-κB pathways. However, how a single receptor engages these two distinct pathways is still poorly understood. Using lymphotoxin β receptor (LTβR) as a prototype, we showed that activation of the alternative, but not the classical, NF-κB pathway relied on internalization of the receptor. Further molecular analyses revealed a specific cytosolic region of LTβR essential for its internalization, TRAF3 recruitment, and p100 processing. Interestingly, we found that dynamin-dependent, but clathrin-independent, internalization of LTβR appeared to be required for the activation of the alternative, but not the classical, NF-κB pathway. In vivo, ligand-induced internalization of LTβR in mesenteric lymph node stromal cells correlated with induction of alternative NF-κB target genes. Thus, our data shed light on LTβR cellular trafficking as a process required for specific biological functions of NF-κB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, a quantitative approach was used to investigate the role of D142, which belongs to the highly conserved E/DRY sequence, in the activation process of the alpha1B-adrenergic receptor (alpha1B-AR). Experimental and computer-simulated mutagenesis were performed by substituting all possible natural amino acids at the D142 site. The resulting congeneric set of proteins together with the finding that all the receptor mutants show various levels of constitutive (agonist-independent) activity enabled us to quantitatively analyze the relationships between structural/dynamic features and the extent of constitutive activity. Our results suggest that the hydrophobic/hydrophilic character of D142, which could be regulated by protonation/deprotonation of this residue, is an important modulator of the transition between the inactive (R) and active (R*) state of the alpha1B-AR. Our study represents an example of quantitative structure-activity relationship analysis of the activation process of a G protein-coupled receptor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Chronic activation of the nuclear factor-kappaB (NF-kappaB) in white adipose tissue leads to increased production of pro-inflammatory cytokines, which are involved in the development of insulin resistance. It is presently unknown whether peroxisome proliferator-activated receptor (PPAR) beta/delta activation prevents inflammation in adipocytes. RESEARCH DESIGN AND METHODS AND RESULTS: First, we examined whether the PPARbeta/delta agonist GW501516 prevents lipopolysaccharide (LPS)-induced cytokine production in differentiated 3T3-L1 adipocytes. Treatment with GW501516 blocked LPS-induced IL-6 expression and secretion by adipocytes and the subsequent activation of the signal transducer and activator of transcription 3 (STAT3)-Suppressor of cytokine signaling 3 (SOCS3) pathway. This effect was associated with the capacity of GW501516 to impede LPS-induced NF-kappaB activation. Second, in in vivo studies, white adipose tissue from Zucker diabetic fatty (ZDF) rats, compared with that of lean rats, showed reduced PPARbeta/delta expression and PPAR DNA-binding activity, which was accompanied by enhanced IL-6 expression and NF-kappaB DNA-binding activity. Furthermore, IL-6 expression and NF-kappaB DNA-binding activity was higher in white adipose tissue from PPARbeta/delta-null mice than in wild-type mice. Because mitogen-activated protein kinase-extracellular signal-related kinase (ERK)1/2 (MEK1/2) is involved in LPS-induced NF-kappaB activation in adipocytes, we explored whether PPARbeta/delta prevented NF-kappaB activation by inhibiting this pathway. Interestingly, GW501516 prevented ERK1/2 phosphorylation by LPS. Furthermore, white adipose tissue from animal showing constitutively increased NF-kappaB activity, such as ZDF rats and PPARbeta/delta-null mice, also showed enhanced phospho-ERK1/2 levels. CONCLUSIONS: These findings indicate that activation of PPARbeta/delta inhibits enhanced cytokine production in adipocytes by preventing NF-kappaB activation via ERK1/2, an effect that may help prevent insulin resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Menopause and premature gonadal steroid deficiency are associated with increases in fat mass and body weight. Ovariectomized (OVX) mice also show reduced locomotor activity. Glucose-dependent-insulinotropic-polypeptide (GIP) is known to play an important role both in fat metabolism and locomotor activity. Therefore, we hypothesized that the effects of estrogen on the regulation of body weight, fat mass, and spontaneous physical activity could be mediated in part by GIP signaling. To test this hypothesis, C57BL/6 mice and GIP-receptor knockout mice (Gipr(-/-)) were exposed to OVX or sham operation (n = 10 per group). The effects on body composition, markers of insulin resistance, energy expenditure, locomotor activity, and expression of hypothalamic anorexigenic and orexigenic factors were investigated over 26 wk in all four groups of mice. OVX wild-type mice developed obesity, increased fat mass, and elevated markers of insulin resistance as expected. This was completely prevented in OVX Gipr(-/-) animals, even though their energy expenditure and spontaneous locomotor activity levels did not significantly differ from those of OVX wild-type mice. Cumulative food intake in OVX Gipr(-/-) animals was significantly reduced and associated with significantly lower hypothalamic mRNA expression of the orexigenic neuropeptide Y (NPY) but not of cocaine-amphetamine-related transcript (CART), melanocortin receptors (MCR-3 and MCR-4), or thyrotropin-releasing hormone (TRH). GIP receptors thus interact with estrogens in the hypothalamic regulation of food intake in mice, and their blockade may carry promising potential for the prevention of obesity in gonadal steroid deficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The beta 2-adrenergic receptor undergoes isomerization between an inactive conformation (R) and an active conformation (R*). The formation of the active conformation of the receptor molecule can be promoted by adrenergic agonists or by mutations in the third cytoplasmic domain that constitutively activate the receptor. Here we show that, of several beta-adrenergic receptor-blocking drugs tested, only two, ICI 118551 and betaxolol, inhibit the basal signaling activity of the beta 2-adrenergic receptor, thus acting as negative antagonists. We document the molecular properties of the more efficacious ICI 118551; (i) it shows higher affinity for the inactive form of the receptor and (ii) it inhibits the spontaneous formation of a beta-adrenergic receptor kinase substrate by the receptor. These properties are opposite those of adrenergic agonists, indicating that, in a fashion reciprocal to that of agonists, negative antagonists promote the formation of an inactive conformation of the receptor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We previously reported that hepatitis B virus (HBV) e antigen (HBeAg) inhibits production of interleukin 6 by suppressing NF-κB activation. NF-κB is known to be activated through receptor-interacting serine/threonine protein kinase 2 (RIPK2), and we examined the mechanisms of interleukin 6 regulation by HBeAg. HBeAg inhibits RIPK2 expression and interacts with RIPK2, which may represent 2 mechanisms through which HBeAg blocks nucleotide-binding oligomerization domain-containing protein 1 ligand-induced NF-κB activation in HepG2 cells. Our findings identified novel molecular mechanisms whereby HBeAg modulates intracellular signaling pathways by targeting RIPK2, supporting the concept that HBeAg could impair both innate and adaptive immune responses to promote chronic HBV infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiac ventricular morphogenesis is a key developmental stage during which the ventricles grow considerably in size, but the transcriptional pathways controlling this process remains poorly understood. 14-3-3_ is a member of a conserved protein family that regulates a wide range of processes such as transcription, apoptosis and proliferation by binding to the phospho-serine/threonine residues of its target proteins. We found that deletion of the Ywhae gene (encoding 14-3-3_) in mice leads to abnormal ventricular morphogenesis and an embryonic cardiomyopathy (Cieslik KA et al, Circ. Res. 2008, abstract). Interestingly, we recently showed in cultured cells that the Ywhae gene is regulated directly by peroxisome proliferator-activated receptor _ (PPAR_) (Brunelli L et al, Circ. Res. 2007), a ligand-inducible nuclear receptor that controls energy metabolism and development. Postnatal cardiac-specific deletion of the Ppard gene in mice causes a lethal dilated cardiomyopathy, but it is still unknown whether PPAR_ regulates genes involved in heart development. We hypothesized that the expression of the Ywhae gene is responsive to PPAR_ during heart development. We confirmed that PPAR_ is expressed in the heart during development, and found higher expression at E10.5 compared to later gestational ages. We showed by immunofluorescence that a PPAR_ agonist (50 _M L-165,041 for 24 hr) upregulates 14-3-3_ in primary cardiomyocytes. We showed that when P19CL6 cells are driven towards cardiomyocyte lineage by dimethyl sulfoxide (DMSO), 14-3-3_ levels increase 4-fold, while L-165,041 treatment increases levels by an additional 50%. Based on previous work in mice (Leibowitz MD et al, FEBS Lett. 2000; Letavernier E et al, J. Am. Soc. Nephrol. 2005), we tested the response of Ywhae to PPAR_ in vivo . We fed 30 mg/kg/day L-165,041 to 14-3-3__/_ adult pregnant mice for 3 days starting at E9.5 and assessed Ywhae mRNA levels in embryonic hearts at E12.5. Baseline mRNA levels in Ywhae_/_ hearts were double that of Ywhae_/ hearts, while L-165,041 upregulated Ywhae mRNA levels in both Ywhae_/_ and Ywhae_/ hearts by 65%. These results indicate that Ywhae responds to PPAR_ in vivo, and suggest that PPAR_ regulates Ywhae during ventricular morphogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phosphatidylinositol 3-kinase-mammalian target of rapamycin (PI3K-mTOR) pathway plays pivotal roles in cell survival, growth, and proliferation downstream of growth factors. Its perturbations are associated with cancer progression, type 2 diabetes, and neurological disorders. To better understand the mechanisms of action and regulation of this pathway, we initiated a large scale yeast two-hybrid screen for 33 components of the PI3K-mTOR pathway. Identification of 67 new interactions was followed by validation by co-affinity purification and exhaustive literature curation of existing information. We provide a nearly complete, functionally annotated interactome of 802 interactions for the PI3K-mTOR pathway. Our screen revealed a predominant place for glycogen synthase kinase-3 (GSK3) A and B and the AMP-activated protein kinase. In particular, we identified the deformed epidermal autoregulatory factor-1 (DEAF1) transcription factor as an interactor and in vitro substrate of GSK3A and GSK3B. Moreover, GSK3 inhibitors increased DEAF1 transcriptional activity on the 5-HT1A serotonin receptor promoter. We propose that DEAF1 may represent a therapeutic target of lithium and other GSK3 inhibitors used in bipolar disease and depression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: To evaluate the role of endothelin-1 (ET-1) in hypertension, we investigated density and distribution of ETA and ETB receptors in hearts and kidneys of deoxycorticosterone acetate (DOCA)-salt and 1 kidney -- 1 clip (1K1C) hypertensive rats. METHODS: Five groups of uninephrectomized Wistar rats were put on a low salt diet. Three groups of rats drank tap water and two groups received saline. One group of each regimen received DOCA subcutaneously and two corresponding groups without DOCA served as controls. The fifth group of rats had the renal artery clipped to induce 1K1C hypertension. At 6 weeks, mean arterial pressure (MAP) was recorded and membrane binding assays using 125I-ET-1 were carried out. RESULTS: MAP was increased from control 122 +/- 3 to 155 +/- 6 and 218 +/- 11 mmHg in DOCA-salt and 1K1C rats, respectively, and cardiac weight index was increased. ETA receptors were predominantly expressed in the heart, whereas ETB receptors were predominant in the kidney. In the kidneys, the density of the ETB receptor subtype was upregulated in DOCA-salt and 1K1C rats from 160 +/- 8 to 217 +/- 12 and 190 +/- 2 fmol/mg (P < 0.05), respectively, and ETA tended to be downregulated (P = 0.057). Plasma renin activity was decreased in DOCA-salt rats from 17 +/- 3 to 0.17 +/- 0.01 ng/ml per h and increased in 1K1C rats on low salt diet to 30 +/- 5 ng/ml per h. CONCLUSIONS: Since ETB is the predominant endothelin receptor in the kidneys, upregulation of the ETB receptor mediating vasodilation and downregulation of the ETA receptor mediating vasoconstriction would be compatible with a mainly renal counter-regulatory effect of endothelin-1 to hypertension. Both low and high renin models of hypertension may be affected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transfection of a human estrogen receptor cDNA expression vector (HEO) into cultured Xenopus kidney cells confers estrogen responsiveness to the recipient cells as demonstrated by the hormone dependent expression of co-transfected Xenopus vitellogenin-CAT chimeric genes. The estrogen stimulation of these vit-CAT genes is dependent upon the presence of the vitellogenin estrogen responsive element (ERE) in their 5' flanking region. Thus, functional human estrogen receptor (hER) can be synthesized in heterologous lower vertebrate cells and can act as a trans-acting regulatory factor that is necessary, together with estradiol, for the induction of the vit-CAT constructs in these cells. In addition, vitellogenin minigenes co-transfected with the HEO expression vector also respond to hormonal stimulation. Their induction is not higher than that of the vit-CAT chimeric genes. It suggests that in the Xenopus kidney cell line B 3.2, the structural parts of the vitellogenin minigenes do not play a role in the induction process. Furthermore, no stabilizing effect of estrogen on vitellogenin mRNA is observed in these cells. In contrast to the transfected genes, the endogenous chromosomal vitellogenin genes remain silent, demonstrating that in spite of the presence of the hER and the hormone, the conditions necessary for their activation are not fulfilled.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Postmenopausal women with hormone receptor-positive early breast cancer have persistent, long-term risk of breast-cancer recurrence and death. Therefore, trials assessing endocrine therapies for this patient population need extended follow-up. We present an update of efficacy outcomes in the Breast International Group (BIG) 1-98 study at 8·1 years median follow-up. METHODS: BIG 1-98 is a randomised, phase 3, double-blind trial of postmenopausal women with hormone receptor-positive early breast cancer that compares 5 years of tamoxifen or letrozole monotherapy, or sequential treatment with 2 years of one of these drugs followed by 3 years of the other. Randomisation was done with permuted blocks, and stratified according to the two-arm or four-arm randomisation option, participating institution, and chemotherapy use. Patients, investigators, data managers, and medical reviewers were masked. The primary efficacy endpoint was disease-free survival (events were invasive breast cancer relapse, second primaries [contralateral breast and non-breast], or death without previous cancer event). Secondary endpoints were overall survival, distant recurrence-free interval (DRFI), and breast cancer-free interval (BCFI). The monotherapy comparison included patients randomly assigned to tamoxifen or letrozole for 5 years. In 2005, after a significant disease-free survival benefit was reported for letrozole as compared with tamoxifen, a protocol amendment facilitated the crossover to letrozole of patients who were still receiving tamoxifen alone; Cox models and Kaplan-Meier estimates with inverse probability of censoring weighting (IPCW) are used to account for selective crossover to letrozole of patients (n=619) in the tamoxifen arm. Comparison of sequential treatments to letrozole monotherapy included patients enrolled and randomly assigned to letrozole for 5 years, letrozole for 2 years followed by tamoxifen for 3 years, or tamoxifen for 2 years followed by letrozole for 3 years. Treatment has ended for all patients and detailed safety results for adverse events that occurred during the 5 years of treatment have been reported elsewhere. Follow-up is continuing for those enrolled in the four-arm option. BIG 1-98 is registered at clinicaltrials.govNCT00004205. FINDINGS: 8010 patients were included in the trial, with a median follow-up of 8·1 years (range 0-12·4). 2459 were randomly assigned to monotherapy with tamoxifen for 5 years and 2463 to monotherapy with letrozole for 5 years. In the four-arm option of the trial, 1546 were randomly assigned to letrozole for 5 years, 1548 to tamoxifen for 5 years, 1540 to letrozole for 2 years followed by tamoxifen for 3 years, and 1548 to tamoxifen for 2 years followed by letrozole for 3 years. At a median follow-up of 8·7 years from randomisation (range 0-12·4), letrozole monotherapy was significantly better than tamoxifen, whether by IPCW or intention-to-treat analysis (IPCW disease-free survival HR 0·82 [95% CI 0·74-0·92], overall survival HR 0·79 [0·69-0·90], DRFI HR 0·79 [0·68-0·92], BCFI HR 0·80 [0·70-0·92]; intention-to-treat disease-free survival HR 0·86 [0·78-0·96], overall survival HR 0·87 [0·77-0·999], DRFI HR 0·86 [0·74-0·998], BCFI HR 0·86 [0·76-0·98]). At a median follow-up of 8·0 years from randomisation (range 0-11·2) for the comparison of the sequential groups with letrozole monotherapy, there were no statistically significant differences in any of the four endpoints for either sequence. 8-year intention-to-treat estimates (each with SE ≤1·1%) for letrozole monotherapy, letrozole followed by tamoxifen, and tamoxifen followed by letrozole were 78·6%, 77·8%, 77·3% for disease-free survival; 87·5%, 87·7%, 85·9% for overall survival; 89·9%, 88·7%, 88·1% for DRFI; and 86·1%, 85·3%, 84·3% for BCFI. INTERPRETATION: For postmenopausal women with endocrine-responsive early breast cancer, a reduction in breast cancer recurrence and mortality is obtained by letrozole monotherapy when compared with tamoxifen montherapy. Sequential treatments involving tamoxifen and letrozole do not improve outcome compared with letrozole monotherapy, but might be useful strategies when considering an individual patient's risk of recurrence and treatment tolerability. FUNDING: Novartis, United States National Cancer Institute, International Breast Cancer Study Group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Signal transducer and activator of transcription (STAT)-3 inhibitors play an important role in regulating immune responses. Galiellalactone (GL) is a fungal secondary metabolite known to interfere with the binding of phosphorylated signal transducer and activator of transcription (pSTAT)-3 as well of pSTAT-6 dimers to their target DNA in vitro. Intra nasal delivery of 50 μg GL into the lung of naive Balb/c mice induced FoxP3 expression locally and IL-10 production and IL-12p40 in RNA expression in the airways in vivo. In a murine model of allergic asthma, GL significantly suppressed the cardinal features of asthma, such as airway hyperresponsiveness, eosinophilia and mucus production, after sensitization and subsequent challenge with ovalbumin (OVA). These changes resulted in induction of IL-12p70 and IL-10 production by lung CD11c(+) dendritic cells (DCs) accompanied by an increase of IL-3 receptor α chain and indoleamine-2,3-dioxygenase expression in these cells. Furthermore, GL inhibited IL-4 production in T-bet-deficient CD4(+) T cells and down-regulated the suppressor of cytokine signaling-3 (SOCS-3), also in the absence of STAT-3 in T cells, in the lung in a murine model of asthma. In addition, we found reduced amounts of pSTAT-5 in the lung of GL-treated mice that correlated with decreased release of IL-2 by lung OVA-specific CD4(+) T cells after treatment with GL in vitro also in the absence of T-bet. Thus, GL treatment in vivo and in vitro emerges as a novel therapeutic approach for allergic asthma by modulating lung DC phenotype and function resulting in a protective response via CD4(+)FoxP3(+) regulatory T cells locally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The antidiuretic effect of vasopressin is mediated by V2 receptors (V2R) that are located in kidney connecting tubules and collecting ducts. This study provides evidence that V2R signaling is negatively regulated by regulator of G protein signaling 2 (RGS2), a member of the family of RGS proteins. This study demonstrates that (1) RGS2 expression in the kidney is restricted to the vasopressin-sensitive part of the nephron (thick ascending limb, connecting tubule, and collecting duct); (2) expression of RGS2 is rapidly upregulated by vasopressin; (3) the vasopressin-dependent accumulation of cAMP, the principal messenger of V2R signaling, is significantly higher in collecting ducts that are microdissected from the RGS2(-/-) mice compared with their wild-type littermates; and (4) analysis of urine output of mice that were exposed to water restriction followed by acute water loading revealed that RGS2(-/-) mice exhibit an increased renal responsiveness to vasopressin. It is proposed that RGS2 is involved in negative feedback regulation of V2R signaling.