351 resultados para Poyet, Guillaume (1473-1548)
Resumo:
Arthroderma benhamiae is a zoophilic dermatophyte belonging to the Trichophyton mentagrophytes species complex. Here, a population of A. benhamiae wild strains from the same geographical area (Switzerland) was studied by comparing their morphology, assessing their molecular variability using internal transcribed spacer (ITS) and 28S rRNA gene sequencing, and evaluating their interfertility. Sequencing of the ITS region and of part of the 28S rRNA gene revealed the existence of two infraspecific groups with markedly different colony phenotypes: white (group I) and yellow (group II), respectively. For all strains, the results of mating type identification by PCR, using HMG (high-mobility group) and α-box genes in the mating type locus as targets, were in total accordance with the results of mating type identification by strain confrontation experiments. White-phenotype strains were of mating type + (mt+) or mating type - (mt-), whilst yellow-phenotype strains were all mt-. White and yellow strains were found to produce fertile cleistothecia after mating with A. benhamiae reference tester strains, which belonged to a third group intermediate between groups I and II. However, no interfertility was observed between yellow strains and white strains of mt+. A significant result was that white strains of mt- were able to mate and produce fertile cleistothecia with the white A. benhamiae strain CBS 112371 (mt+), the genome of which has recently been sequenced and annotated. This finding should offer new tools for investigating the biology and genetics of dermatophytes using wild-type strains.
Resumo:
We evaluated 25 protocol variants of 14 independent computational methods for exon identification, transcript reconstruction and expression-level quantification from RNA-seq data. Our results show that most algorithms are able to identify discrete transcript components with high success rates but that assembly of complete isoform structures poses a major challenge even when all constituent elements are identified. Expression-level estimates also varied widely across methods, even when based on similar transcript models. Consequently, the complexity of higher eukaryotic genomes imposes severe limitations on transcript recall and splice product discrimination that are likely to remain limiting factors for the analysis of current-generation RNA-seq data.
Resumo:
As more tumor antigens are discovered and as computer-guided T cell epitope prediction programs become more sophisticated, many potential T cell epitopes are synthesized and demonstrated to be antigenic in vitro. However, it is estimated that about 50% of such tumor antigen-specific T cells have not been demonstrated to recognize the naturally presented epitopes due to either technical difficulties, such as T cell cloning which is still challenging for many laboratories; or the predicted T cell epitopes are not generated or not generated in sufficient amounts by the antigen processing machinery. However, to potentially identify clinically relevant vaccine candidate epitopes, it is essential to demonstrate natural antigen presentation. Here we combine the advantages of MHC tetramer and intracellular cytokine staining to sensitively detect natural antigen presentation by tumor cells for epitopes of interest. The novel method does not require T cell cloning or long-term T cell culture. Because the antigen-specific T cells are positively identified, this method is much less influenced by IFNgamma producing cells with unknown specificities and should be widely applicable.
Resumo:
Papez circuit is one of the major pathways of the limbic system, and it is involved in the control of memory and emotion. Structural and functional alterations have been reported in psychiatric, neurodegenerative, and epileptic diseases. Despite the clinical interest, however, in-vivo imaging of the entire circuit remains a technological challenge. We used magnetic resonance diffusion spectrum imaging to comprehensively picture the Papez circuit in healthy humans: (i) the hippocampus-mammillary body pathway, (ii) the connections between the lateral subiculum and the cingulate cortex, and (iii) the mammillo-thalamic tract. The diagnostic and therapeutic implications of these results are discussed in the context of recent findings reporting the involvement of the Papez circuit in neurological and psychiatric diseases.
Resumo:
Over the past two decades, intermittent hypoxic training (IHT), that is, a method where athletes live at or near sea level but train under hypoxic conditions, has gained unprecedented popularity. By adding the stress of hypoxia during 'aerobic' or 'anaerobic' interval training, it is believed that IHT would potentiate greater performance improvements compared to similar training at sea level. A thorough analysis of studies including IHT, however, leads to strikingly poor benefits for sea-level performance improvement, compared to the same training method performed in normoxia. Despite the positive molecular adaptations observed after various IHT modalities, the characteristics of optimal training stimulus in hypoxia are still unclear and their functional translation in terms of whole-body performance enhancement is minimal. To overcome some of the inherent limitations of IHT (lower training stimulus due to hypoxia), recent studies have successfully investigated a new training method based on the repetition of short (<30 s) 'all-out' sprints with incomplete recoveries in hypoxia, the so-called repeated sprint training in hypoxia (RSH). The aims of the present review are therefore threefold: first, to summarise the main mechanisms for interval training and repeated sprint training in normoxia. Second, to critically analyse the results of the studies involving high-intensity exercises performed in hypoxia for sea-level performance enhancement by differentiating IHT and RSH. Third, to discuss the potential mechanisms underpinning the effectiveness of those methods, and their inherent limitations, along with the new research avenues surrounding this topic.
Resumo:
The CD8 coreceptor plays a crucial role in both T cell development in the thymus and in the activation of mature T cells in response to Ag-specific stimulation. In this study we used soluble peptides-MHC class I (pMHC) multimeric complexes bearing mutations in the CD8 binding site that impair their binding to the MHC, together with altered peptide ligands, to assess the impact of CD8 on pMHC binding to the TCR. Our data support a model in which CD8 promotes the binding of TCR to pMHC. However, once the pMHC/TCR complex is formed, the TCR dominates the pMHC/TCR dissociation rates. As a consequence of these molecular interactions, under physiologic conditions CD8 plays a key role in complex formation, resulting in the enhancement of CD8 T cell functions whose specificity, however, is determined by the TCR.
Resumo:
Mathematical methods combined with measurements of single-cell dynamics provide a means to reconstruct intracellular processes that are only partly or indirectly accessible experimentally. To obtain reliable reconstructions, the pooling of measurements from several cells of a clonal population is mandatory. However, cell-to-cell variability originating from diverse sources poses computational challenges for such process reconstruction. We introduce a scalable Bayesian inference framework that properly accounts for population heterogeneity. The method allows inference of inaccessible molecular states and kinetic parameters; computation of Bayes factors for model selection; and dissection of intrinsic, extrinsic and technical noise. We show how additional single-cell readouts such as morphological features can be included in the analysis. We use the method to reconstruct the expression dynamics of a gene under an inducible promoter in yeast from time-lapse microscopy data.
Resumo:
Screening for colorectal cancer (CRC) is associated with reduced CRC mortality, but low screening rates have been reported in several settings. The aim of the study was to assess predictors of low CRC screening in Switzerland. A retrospective cohort of a random sample of 940 patients aged 50-80 years followed for 2 years from four Swiss University primary care settings was used. Patients with illegal residency status and a history of CRC or colorectal polyps were excluded. We abstracted sociodemographic data of patients and physicians, patient health status, and indicators derived from RAND's Quality Assessment Tools from medical charts. We defined CRC screening as colonoscopy in the last 10 years, flexible sigmoidoscopy in the last 5 years, or fecal occult blood testing in the last 2 years. We used bivariate and multivariate logistic regression analyses. Of 940 patients (mean age 63.9 years, 42.7% women), 316 (33.6%) had undergone CRC screening. In multivariate analysis, birthplace in a country outside of Western Europe and North America [odds ratio (OR) 0.65, 95% confidence interval (CI) 0.45-0.97], male sex of the physician in charge (OR 0.67, 95% CI 0.50-0.91), BMI 25.0-29.9 kg/m (OR 0.66, CI 0.46-0.96) and at least 30.0 kg/m (OR 0.61, CI 0.40-0.90) were associated with lower CRC screening rates. Obesity, overweight, birthplace outside of Western Europe and North America, and male sex of the physician in charge were associated with lower CRC screening rates in Swiss University primary care settings. Physician perception of obesity and its impact on their recommendation for CRC screening might be a target for further research.
Resumo:
Soluble MHC-peptide (pMHC) complexes, commonly referred to as tetramers, are widely used to enumerate and to isolate Ag-specific CD8(+) CTL. It has been noted that such complexes, as well as microsphere- or cell-associated pMHC molecules compromise the functional integrity of CTL, e.g., by inducing apoptosis of CTL, which limits their usefulness for T cell sorting or cloning. By testing well-defined soluble pMHC complexes containing linkers of different length and valence, we find that complexes comprising short linkers (i.e., short pMHC-pMHC distances), but not those containing long linkers, induce rapid death of CTL. This cell death relies on CTL activation, the coreceptor CD8 and cytoskeleton integrity, but is not dependent on death receptors (i.e., Fas, TNFR1, and TRAILR2) or caspases. Within minutes of CTL exposure to pMHC complexes, reactive oxygen species emerged and mitochondrial membrane depolarized, which is reminiscent of caspase-independent T cell death. The morphological changes induced during this rapid CTL death are characteristic of programmed necrosis and not apoptosis. Thus, soluble pMHC complexes containing long linkers are recommended to prevent T cell death, whereas those containing short linkers can be used to eliminate Ag-specific CTL.
Resumo:
OBJECTIVE: To identify predictors of improved asthma control under conditions of everyday practice in Switzerland. RESEARCH DESIGN AND METHODS: A subgroup of 1380 patients with initially inadequately controlled asthma was defined from a cohort of 1893 asthmatic patients (mean age 45.3 + or - 19.2 years) recruited by 281 office-based physicians who participated in a previously-conducted asthma control survey in Switzerland. Multiple regression techniques were used to identify predictors of improved asthma control, defined as an absolute decrease of 0.5 points or more in the Asthma Control Questionnaire between the baseline (V1) and follow-up visit (V2). RESULTS: Asthma control between V1 and V2 improved in 85.7%. Add-on treatment with montelukast was reported in 82.9% of the patients. Patients with worse asthma control at V1 and patients with good self-reported adherence to therapy had significantly higher chances of improved asthma control (OR = 1.24 and 1.73, 95% CI 1.18-1.29 and 1.20-2.50, respectively). Compared to adding montelukast and continuing the same inhaled corticosteroid/fixed combination (ICS/FC) dose, the addition of montelukast to an increased ICS/FC dose yielded a 4 times higher chance of improved asthma control (OR = 3.84, 95% CI 1.58-9.29). Significantly, withholding montelukast halved the probability of achieving improved asthma control (OR = 0.51, 95% CI = 0.33-078). The probability of improved asthma control was almost 5 times lower among patients in whom FEV(1) was measured compared to those in whom it was not (OR = 0.23, 95% CI = 0.09-0.55). Patients with severe persistent asthma also had a significantly lower probability of improved control (OR = 0.15, 95% CI = 0.07-0.32), as did older patients (OR = 0.98, 95% CI = 0.97-0.99). Subgroup analyses which excluded patients whose asthma may have been misdiagnosed and might in reality have been chronic obstructive pulmonary disease (COPD) showed comparable results. CONCLUSIONS: Under conditions of everyday clinical practice, the addition of montelukast to ICS/FC and good adherence to therapy increased the likelihood of achieving better asthma control at the follow-up visit, while older age and more severe asthma significantly decreased it.
Resumo:
BACKGROUND AND OBJECTIVES: It is well established by a large number of randomized controlled trials that lowering blood pressure (BP) and low-density lipoprotein cholesterol (LDL-C) by drugs are powerful means to reduce stroke incidence, but the optimal BP and LDL-C levels to be achieved are largely uncertain. Concerning BP targets, two hypotheses are being confronted: first, the lower the BP, the better the treatment outcome, and second, the hypothesis that too low BP values are accompanied by a lower benefit and even higher risk. It is also unknown whether BP lowering and LDL-C lowering have additive beneficial effects for the primary and secondary prevention of stroke, and whether these treatments can prevent cognitive decline after stroke. RESULTS: A review of existing data from randomized controlled trials confirms that solid evidence on optimal BP and LDL-C targets is missing, possible interactions between BP and LDL-C lowering treatments have never been directly investigated, and evidence in favour of a beneficial effect of BP or LDL-C lowering on cognitive decline is, at best, very weak. CONCLUSION: A new, large randomized controlled trial is needed to determine the optimal level of BP and LDL-C for the prevention of recurrent stroke and cognitive decline.