167 resultados para POLYMER ELECTROLYTE MEMBRANE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies aiming at the elucidation of the genetic basis of rare monogenic forms of hypertension have identified mutations in genes coding for the epithelial sodium channel ENaC, for the mineralocorticoid receptor, or for enzymes crucial for the synthesis of aldosterone. These genetic studies clearly demonstrate the importance of the regulation of Na(+) absorption in the aldosterone-sensitive distal nephron (ASDN), for the maintenance of the extracellular fluid volume and blood pressure. Recent studies aiming at a better understanding of the cellular and molecular basis of ENaC-mediated Na(+) absorption in the distal part of nephron, have essentially focused on the regulation ENaC activity and on the aldosterone-signaling cascade. ENaC is a constitutively open channel, and factors controlling the number of active channels at the cell surface are likely to have profound effects on Na(+) absorption in the ASDN, and in the amount of Na(+) that is excreted in the final urine. A number of membrane-bound proteases, kinases, have recently been identified that increase ENaC activity at the cell surface in heterologous expressions systems. Ubiquitylation is a general process that regulates the stability of a variety of target proteins that include ENaC. Recently, deubiquitylating enzymes have been shown to increase ENaC activity in heterologous expressions systems. These regulatory mechanisms are likely to be nephron specific, since in vivo studies indicate that the adaptation of the renal excretion of Na(+) in response to Na(+) diet occurs predominantly in the early part (the connecting tubule) of the ASDN. An important work is presently done to determine in vivo the physiological relevance of these cellular and molecular mechanisms in regulation of ENaC activity. The contribution of the protease-dependent ENaC regulation in mediating Na(+) absorption in the ASDN is still not clearly understood. The signaling pathway that involves ubiquitylation of ENaC does not seem to be absolutely required for the aldosterone-mediated control of ENaC. These in vivo physiological studies presently constitute a major challenge for our understanding of the regulation of ENaC to maintain the Na(+) balance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

beta-Arrestins regulate the functioning of G protein-coupled receptors in a variety of cellular processes including receptor-mediated endocytosis and activation of signaling molecules such as ERK. A key event in these processes is the G protein-coupled receptor-mediated recruitment of beta-arrestins to the plasma membrane. However, despite extensive knowledge in this field, it is still disputable whether activation of signaling pathways via beta-arrestin recruitment entails paired activation of receptor dimers. To address this question, we investigated the ability of different muscarinic receptor dimers to recruit beta-arrestin-1 using both co-immunoprecipitation and fluorescence microscopy in COS-7 cells. Experimentally, we first made use of a mutated muscarinic M(3) receptor, which is deleted in most of the third intracellular loop (M(3)-short). Although still capable of activating phospholipase C, this receptor loses almost completely the ability to recruit beta-arrestin-1 following carbachol stimulation in COS-7 cells. Subsequently, M(3)-short was co-expressed with the M(3) receptor. Under these conditions, the M(3)/M(3)-short heterodimer could not recruit beta-arrestin-1 to the plasma membrane, even though the control M(3)/M(3) homodimer could. We next tested the ability of chimeric adrenergic muscarinic alpha(2)/M(3) and M(3)/alpha(2) heterodimeric receptors to co-immunoprecipitate with beta-arrestin-1 following stimulation with adrenergic and muscarinic agonists. beta-Arrestin-1 co-immunoprecipitation could be induced only when carbachol or clonidine were given together and not when the two agonists were supplied separately. Finally, we tested the reciprocal influence that each receptor may exert on the M(2)/M(3) heterodimer to recruit beta-arrestin-1. Remarkably, we observed that M(2)/M(3) heterodimers recruit significantly greater amounts of beta-arrestin-1 than their respective M(3)/M(3) or M(2)/M(2) homodimers. Altogether, these findings provide strong evidence in favor of the view that binding of beta-arrestin-1 to muscarinic M(3) receptors requires paired stimulation of two receptor components within the same receptor dimer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: To evaluate the long-term efficacy of multilayer amniotic membrane transplantation for reconstruction of epithelium and stroma in non-traumatic corneal perforations (less than 2 mm) or deep ulcers with descemetocele.Design: Retrospective, non-comparative, interventional case series.Patients and Methods: Eleven consecutive patients with non-traumatic corneal perforations or deep corneal ulcers with descemetocele refractory to conventional treatments: herpetic or zoster keratitis (n = 4), Sjögren's syndrome (n = 2), rosacea (n = 1), hydrops (n = 1), mucous membrane pemphigoid (n = 1), bacterial keratitis (n = 1) and perforation after protontherapy for melanoma (n = 1). Intervention was: multilayer amniotic membrane transplantation with cryopreserved amniotic membrane. Complication rate and clinical outcome were evaluated in this long-term follow-up.Results: Mean follow-up was 32 months (12 to 60). Integration of the multilayer amniotic membrane was obtained in 10 cases after one year. Corneal epithelium healed above the membrane in 10 cases within 3 weeks and remained stable after 32 months in 9 cases. Thickness of the stroma was increased and remained stable during the follow-up in 9 cases. In one case herpetic keratitis recurred with a corneal perforation. The clearing of the amniotic membrane was gradually obtained over a period of 11 months. Complications occurred in 15 % of the eyes during the long-term follow-up.Conclusion: Multilayer amniotic membrane transplantation is a safe and efficient technique for a long restoration of the corneal integrity after non-traumatic corneal perforations or deep corneal ulcers with descemetocele. Long-term prognosis of these eyes depends of the gravity of the initial disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Severe acute refractory respiratory failure is considered a life-threatening situation, with a high mortality of 40 to 60%. When conservative oxygenation methods fail, a lifesaving measure is the introduction of extracorporeal membrane oxygenation (ECMO). Venovenous ECMO (VV-ECMO) is a preferred modality of support for patients with refractory acute respiratory failure. Specifically, bicaval VV-ECMO is a well-recognized and validated therapy, where single or double periphery venous access is used for the insertion of two differently sized cannulas in order to achieve adequate blood oxygenation. Compared to venoarterial ECMO, in VV-ECMO, the rate of complications, such as thrombosis, bleeding, infection and ischemic events, is lower. On the other hand, the size and insertion location is an obstacle to patient mobilization. This is a considerable problem for patients where the time interval for lung recovery and the bridge to the transplantation is prolonged. To address this issue, a dual-lumen, single venovenous cannula was introduced. Here, by insertion of one single catheter in one target vessel, in a majority of cases in the right internal jugular vein, satisfactory oxygenation of the patient is achieved. In this form, the instituted VV-ECMO enables patient mobility, better physical rehabilitation and facilitates pulmonary extubation and toilet. However, relatively early, after the first short-term reports were published, a relatively high complication rate became evident. In the recent literature, the complication rate using actual commercially available double-lumen venovenous cannula ranges between 5 and 30%. These cases were mostly conjoined to the implantation phase or the early postoperative phase and vary between right heart perforation to migration of the cannula. This review focuses on complications allied to commercially available dual-lumen, single, venovenous cannula implantation, pointing out the critical segments of the implantation process and analyzing the structure of the device.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Membrane fusion is induced by SNARE complexes that are anchored in both fusion partners. SNAREs zipper up from the N to C terminus bringing the two membranes into close apposition. Their transmembrane domains (TMDs) might be mere anchoring devices, deforming bilayers by mechanical force. Structural studies suggested that TMDs might also perturb lipid structure by undergoing conformational transitions or by zipping up into the bilayer. Here, we tested this latter hypothesis, which predicts that the activity of SNAREs should depend on the primary sequence of their TMDs. We replaced the TMDs of all vacuolar SNAREs (Nyv1, Vam3, and Vti1) by a lipid anchor, by a TMD from a protein unrelated to the membrane fusion machinery, or by artificial leucine-valine sequences. Individual exchange of the native SNARE TMDs against an unrelated transmembrane anchor or an artificial leucine-valine sequence yielded normal fusion activities. Fusion activity was also preserved upon pairwise exchange of the TMDs against unrelated peptides, which eliminates the possibility for specific TMD-TMD interactions. Thus, a specific primary sequence or zippering beyond the SNARE domains is not a prerequisite for fusion. Lipid-anchored Vti1 was fully active, and lipid-anchored Nyv1 permitted the reaction to proceed up to hemifusion, and lipid-anchored Vam3 interfered already before hemifusion. The unequal contribution of proteinaceous TMDs on Vam3 and Nyv1 suggests that Q- and R-SNAREs might make different contributions to the hemifusion intermediate and the opening of the fusion pore. Furthermore, our data support the view that SNARE TMDs serve as nonspecific membrane anchors in vacuole fusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Electrolytes handling by the kidney is essential for volume and blood pressure (BP) homeostasis but their distribution and heritability are not well described. We estimated the heritability of kidney function as well as of serum and urine concentrations, renal clearances and fractional excretions for sodium, chloride, potassium, calcium, phosphate and magnesium in a Swiss population-based study. DESIGN AND METHOD: Nuclear families were randomly selected from the general population in Switzerland. We estimated glomerular filtration rate (eGFR) using the CKD-EPI and MDRD equations. Urine was collected separately during day and night over 24-hour. We used the ASSOC program (S.A.G.E.) to estimate narrow sense heritability, including as covariates in the model: age, sex, body mass index and study center. RESULTS: The 1128 participants (537 men and 591 women from 273 families), had mean (sd) age of 47.4(17.5) years, body mass index of 25.0 (4.5) kg/m2 and CKD-EPI of 98.0(18.5) mL/min/1.73 m2. Heritability estimates (SE) were 46.0% (0.06), 48.0% (0.06) and 18.0% (0.06) for CKD-EPI, MDRD and 24-hour creatinine clearance (P < 0.05), respectively. Heritability [SE] of serum concentration was highest for calcium (37%[0.06]) and lowest for sodium (13%[0.05]). Heritabilities [SE] of 24-h urine concentrations and excretions, and of fractional excretions were highest for calcium (51%[0.06], 44%[0.06] and 51%[0.06], respectively) and lowest for potassium (11%[0.05], 10%[0.05] and 16%[0.06], respectively). All results were statistically different from zero.(Figure is included in full-text article.) CONCLUSIONS: : Serum and urine levels, urinary excretions and renal handling of electrolytes, particularly calcium, are heritable in the general adult population. Identifying genetic variants involved in electrolytes homeostasis may provide useful insight into the pathophysiological mechanisms involved in common chronic diseases such as kidney diseases, hypertension and diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The membrane-bound serine protease CAP2/Tmprss4 has been previously identified in vitro as a positive regulator of the epithelial sodium channel (ENaC). To study its in vivo implication in ENaC-mediated sodium absorption, we generated a knockout mouse model for CAP2/Tmprss4. Mice deficient in CAP2/Tmprss4 were viable, fertile, and did not show any obvious histological abnormalities. Unexpectedly, when challenged with sodium-deficient diet, these mice did not develop any impairment in renal sodium handling as evidenced by normal plasma and urinary sodium and potassium electrolytes, as well as normal aldosterone levels. Despite minor alterations in ENaC mRNA expression, we found no evidence for altered proteolytic cleavage of ENaC subunits. In consequence, ENaC activity, as monitored by the amiloride-sensitive rectal potential difference (ΔPD), was not altered even under dietary sodium restriction. In summary, ENaC-mediated sodium balance is not affected by lack of CAP2/Tmprss4 expression and thus, does not seem to directly control ENaC expression and activity in vivo.