270 resultados para Oscillatory regulatory networks
Resumo:
Almost 30 years ago, Bayesian networks (BNs) were developed in the field of artificial intelligence as a framework that should assist researchers and practitioners in applying the theory of probability to inference problems of more substantive size and, thus, to more realistic and practical problems. Since the late 1980s, Bayesian networks have also attracted researchers in forensic science and this tendency has considerably intensified throughout the last decade. This review article provides an overview of the scientific literature that describes research on Bayesian networks as a tool that can be used to study, develop and implement probabilistic procedures for evaluating the probative value of particular items of scientific evidence in forensic science. Primary attention is drawn here to evaluative issues that pertain to forensic DNA profiling evidence because this is one of the main categories of evidence whose assessment has been studied through Bayesian networks. The scope of topics is large and includes almost any aspect that relates to forensic DNA profiling. Typical examples are inference of source (or, 'criminal identification'), relatedness testing, database searching and special trace evidence evaluation (such as mixed DNA stains or stains with low quantities of DNA). The perspective of the review presented here is not exclusively restricted to DNA evidence, but also includes relevant references and discussion on both, the concept of Bayesian networks as well as its general usage in legal sciences as one among several different graphical approaches to evidence evaluation.
Resumo:
A character network represents relations between characters from a text; the relations are based on text proximity, shared scenes/events, quoted speech, etc. Our project sketches a theoretical framework for character network analysis, bringing together narratology, both close and distant reading approaches, and social network analysis. It is in line with recent attempts to automatise the extraction of literary social networks (Elson, 2012; Sack, 2013) and other studies stressing the importance of character- systems (Woloch, 2003; Moretti, 2011). The method we use to build the network is direct and simple. First, we extract co-occurrences from a book index, without the need for text analysis. We then describe the narrative roles of the characters, which we deduce from their respective positions in the network, i.e. the discourse. As a case study, we use the autobiographical novel Les Confessions by Jean-Jacques Rousseau. We start by identifying co-occurrences of characters in the book index of our edition (Slatkine, 2012). Subsequently, we compute four types of centrality: degree, closeness, betweenness, eigenvector. We then use these measures to propose a typology of narrative roles for the characters. We show that the two parts of Les Confessions, written years apart, are structured around mirroring central figures that bear similar centrality scores. The first part revolves around the mentor of Rousseau; a figure of openness. The second part centres on a group of schemers, depicting a period of deep paranoia. We also highlight characters with intermediary roles: they provide narrative links between the societies in the life of the author. The method we detail in this complete case study of character network analysis can be applied to any work documented by an index. Un réseau de personnages modélise les relations entre les personnages d'un récit : les relations sont basées sur une forme de proximité dans le texte, l'apparition commune dans des événements, des citations dans des dialogues, etc. Notre travail propose un cadre théorique pour l'analyse des réseaux de personnages, rassemblant narratologie, close et distant reading, et analyse des réseaux sociaux. Ce travail prolonge les tentatives récentes d'automatisation de l'extraction de réseaux sociaux tirés de la littérature (Elson, 2012; Sack, 2013), ainsi que les études portant sur l'importance des systèmes de personnages (Woloch, 2003; Moretti, 2011). La méthode que nous utilisons pour construire le réseau est directe et simple. Nous extrayons les co-occurrences d'un index sans avoir recours à l'analyse textuelle. Nous décrivons les rôles narratifs des personnages en les déduisant de leurs positions relatives dans le réseau, donc du discours. Comme étude de cas, nous avons choisi le roman autobiographique Les Confessions, de Jean- Jacques Rousseau. Nous déduisons les co-occurrences entre personnages de l'index présent dans l'édition Slatkine (Rousseau et al., 2012). Sur le réseau obtenu, nous calculons quatre types de centralité : le degré, la proximité, l'intermédiarité et la centralité par vecteur propre. Nous utilisons ces mesures pour proposer une typologie des rôles narratifs des personnages. Nous montrons que les deux parties des Confessions, écrites à deux époques différentes, sont structurées autour de deux figures centrales, qui obtiennent des mesures de centralité similaires. La première partie est construite autour du mentor de Rousseau, qui a symbolisé une grande ouverture. La seconde partie se focalise sur un groupe de comploteurs, et retrace une période marquée par la paranoïa chez l'auteur. Nous mettons également en évidence des personnages jouant des rôles intermédiaires, et de fait procurant un lien narratif entre les différentes sociétés couvrant la vie de l'auteur. La méthode d'analyse des réseaux de personnages que nous décrivons peut être appliquée à tout texte de fiction comportant un index.
Resumo:
BACKGROUND: Conserved non-coding sequences in the human genome are approximately tenfold more abundant than known genes, and have been hypothesized to mark the locations of cis-regulatory elements. However, the global contribution of conserved non-coding sequences to the transcriptional regulation of human genes is currently unknown. Deeply conserved elements shared between humans and teleost fish predominantly flank genes active during morphogenesis and are enriched for positive transcriptional regulatory elements. However, such deeply conserved elements account for <1% of the conserved non-coding sequences in the human genome, which are predominantly mammalian. RESULTS: We explored the regulatory potential of a large sample of these 'common' conserved non-coding sequences using a variety of classic assays, including chromatin remodeling, and enhancer/repressor and promoter activity. When tested across diverse human model cell types, we find that the fraction of experimentally active conserved non-coding sequences within any given cell type is low (approximately 5%), and that this proportion increases only modestly when considered collectively across cell types. CONCLUSIONS: The results suggest that classic assays of cis-regulatory potential are unlikely to expose the functional potential of the substantial majority of mammalian conserved non-coding sequences in the human genome.
Resumo:
Until the 1990's, Switzerland could be classified as either a corporatist, cooperative or coordinated market economy where non-market mechanisms of coordination among economic and political actors were very important. In this respect, Business Interest Associations (BIAs) played a key role. The aim of this paper is to look at the historical evolution of the five main peak Swiss BIAs through network analysis for five assorted dates during the 20th century (1910, 1937, 1957, 1980 and 2000) while relying on a database that includes more than 12,000 people. First, we examine the logic of membership in these associations, which allows us to analyze their position and function within the network of the Swiss economic elite. Until the 1980's, BIAs took part in the emergence and consolidation of a closely meshed national network, which declined during the two last decades of the 20th century. Second, we investigate the logic of influence of these associations by looking at the links they maintained with the political and administrative worlds through their links to the political parties and Parliament, and to the administration via the extra-parliamentary commissions (corporatist bodies). In both cases, the recent dynamic of globalization called into question the traditional role of BIAs.
Distributional Issues in Regulatory Policy Implementation : the Case of Air Quality Control Policies
Resumo:
Rifampin-resistant Pseudomonas fluorescens CHA0-Rif and mutants in which the regulatory gene algU (encoding sigma factor sigma(E)) or gacA (encoding a global regulator of secondary metabolism) was inactivated were compared for persistence in three nonsterile soils. Functional algU and (particularly) gacA were needed for CHA0-Rif to maintain cell culturability in soil.
Resumo:
Many complex systems may be described by not one but a number of complex networks mapped on each other in a multi-layer structure. Because of the interactions and dependencies between these layers, the state of a single layer does not necessarily reflect well the state of the entire system. In this paper we study the robustness of five examples of two-layer complex systems: three real-life data sets in the fields of communication (the Internet), transportation (the European railway system), and biology (the human brain), and two models based on random graphs. In order to cover the whole range of features specific to these systems, we focus on two extreme policies of system's response to failures, no rerouting and full rerouting. Our main finding is that multi-layer systems are much more vulnerable to errors and intentional attacks than they appear from a single layer perspective.
Resumo:
Abstract The object of game theory lies in the analysis of situations where different social actors have conflicting requirements and where their individual decisions will all influence the global outcome. In this framework, several games have been invented to capture the essence of various dilemmas encountered in many common important socio-economic situations. Even though these games often succeed in helping us understand human or animal behavior in interactive settings, some experiments have shown that people tend to cooperate with each other in situations for which classical game theory strongly recommends them to do the exact opposite. Several mechanisms have been invoked to try to explain the emergence of this unexpected cooperative attitude. Among them, repeated interaction, reputation, and belonging to a recognizable group have often been mentioned. However, the work of Nowak and May (1992) showed that the simple fact of arranging the players according to a spatial structure and only allowing them to interact with their immediate neighbors is sufficient to sustain a certain amount of cooperation even when the game is played anonymously and without repetition. Nowak and May's study and much of the following work was based on regular structures such as two-dimensional grids. Axelrod et al. (2002) showed that by randomizing the choice of neighbors, i.e. by actually giving up a strictly local geographical structure, cooperation can still emerge, provided that the interaction patterns remain stable in time. This is a first step towards a social network structure. However, following pioneering work by sociologists in the sixties such as that of Milgram (1967), in the last few years it has become apparent that many social and biological interaction networks, and even some technological networks, have particular, and partly unexpected, properties that set them apart from regular or random graphs. Among other things, they usually display broad degree distributions, and show small-world topological structure. Roughly speaking, a small-world graph is a network where any individual is relatively close, in terms of social ties, to any other individual, a property also found in random graphs but not in regular lattices. However, in contrast with random graphs, small-world networks also have a certain amount of local structure, as measured, for instance, by a quantity called the clustering coefficient. In the same vein, many real conflicting situations in economy and sociology are not well described neither by a fixed geographical position of the individuals in a regular lattice, nor by a random graph. Furthermore, it is a known fact that network structure can highly influence dynamical phenomena such as the way diseases spread across a population and ideas or information get transmitted. Therefore, in the last decade, research attention has naturally shifted from random and regular graphs towards better models of social interaction structures. The primary goal of this work is to discover whether or not the underlying graph structure of real social networks could give explanations as to why one finds higher levels of cooperation in populations of human beings or animals than what is prescribed by classical game theory. To meet this objective, I start by thoroughly studying a real scientific coauthorship network and showing how it differs from biological or technological networks using divers statistical measurements. Furthermore, I extract and describe its community structure taking into account the intensity of a collaboration. Finally, I investigate the temporal evolution of the network, from its inception to its state at the time of the study in 2006, suggesting also an effective view of it as opposed to a historical one. Thereafter, I combine evolutionary game theory with several network models along with the studied coauthorship network in order to highlight which specific network properties foster cooperation and shed some light on the various mechanisms responsible for the maintenance of this same cooperation. I point out the fact that, to resist defection, cooperators take advantage, whenever possible, of the degree-heterogeneity of social networks and their underlying community structure. Finally, I show that cooperation level and stability depend not only on the game played, but also on the evolutionary dynamic rules used and the individual payoff calculations. Synopsis Le but de la théorie des jeux réside dans l'analyse de situations dans lesquelles différents acteurs sociaux, avec des objectifs souvent conflictuels, doivent individuellement prendre des décisions qui influenceront toutes le résultat global. Dans ce cadre, plusieurs jeux ont été inventés afin de saisir l'essence de divers dilemmes rencontrés dans d'importantes situations socio-économiques. Bien que ces jeux nous permettent souvent de comprendre le comportement d'êtres humains ou d'animaux en interactions, des expériences ont montré que les individus ont parfois tendance à coopérer dans des situations pour lesquelles la théorie classique des jeux prescrit de faire le contraire. Plusieurs mécanismes ont été invoqués pour tenter d'expliquer l'émergence de ce comportement coopératif inattendu. Parmi ceux-ci, la répétition des interactions, la réputation ou encore l'appartenance à des groupes reconnaissables ont souvent été mentionnés. Toutefois, les travaux de Nowak et May (1992) ont montré que le simple fait de disposer les joueurs selon une structure spatiale en leur permettant d'interagir uniquement avec leurs voisins directs est suffisant pour maintenir un certain niveau de coopération même si le jeu est joué de manière anonyme et sans répétitions. L'étude de Nowak et May, ainsi qu'un nombre substantiel de travaux qui ont suivi, étaient basés sur des structures régulières telles que des grilles à deux dimensions. Axelrod et al. (2002) ont montré qu'en randomisant le choix des voisins, i.e. en abandonnant une localisation géographique stricte, la coopération peut malgré tout émerger, pour autant que les schémas d'interactions restent stables au cours du temps. Ceci est un premier pas en direction d'une structure de réseau social. Toutefois, suite aux travaux précurseurs de sociologues des années soixante, tels que ceux de Milgram (1967), il est devenu clair ces dernières années qu'une grande partie des réseaux d'interactions sociaux et biologiques, et même quelques réseaux technologiques, possèdent des propriétés particulières, et partiellement inattendues, qui les distinguent de graphes réguliers ou aléatoires. Entre autres, ils affichent en général une distribution du degré relativement large ainsi qu'une structure de "petit-monde". Grossièrement parlant, un graphe "petit-monde" est un réseau où tout individu se trouve relativement près de tout autre individu en termes de distance sociale, une propriété également présente dans les graphes aléatoires mais absente des grilles régulières. Par contre, les réseaux "petit-monde" ont, contrairement aux graphes aléatoires, une certaine structure de localité, mesurée par exemple par une quantité appelée le "coefficient de clustering". Dans le même esprit, plusieurs situations réelles de conflit en économie et sociologie ne sont pas bien décrites ni par des positions géographiquement fixes des individus en grilles régulières, ni par des graphes aléatoires. De plus, il est bien connu que la structure même d'un réseau peut passablement influencer des phénomènes dynamiques tels que la manière qu'a une maladie de se répandre à travers une population, ou encore la façon dont des idées ou une information s'y propagent. Ainsi, durant cette dernière décennie, l'attention de la recherche s'est tout naturellement déplacée des graphes aléatoires et réguliers vers de meilleurs modèles de structure d'interactions sociales. L'objectif principal de ce travail est de découvrir si la structure sous-jacente de graphe de vrais réseaux sociaux peut fournir des explications quant aux raisons pour lesquelles on trouve, chez certains groupes d'êtres humains ou d'animaux, des niveaux de coopération supérieurs à ce qui est prescrit par la théorie classique des jeux. Dans l'optique d'atteindre ce but, je commence par étudier un véritable réseau de collaborations scientifiques et, en utilisant diverses mesures statistiques, je mets en évidence la manière dont il diffère de réseaux biologiques ou technologiques. De plus, j'extrais et je décris sa structure de communautés en tenant compte de l'intensité d'une collaboration. Finalement, j'examine l'évolution temporelle du réseau depuis son origine jusqu'à son état en 2006, date à laquelle l'étude a été effectuée, en suggérant également une vue effective du réseau par opposition à une vue historique. Par la suite, je combine la théorie évolutionnaire des jeux avec des réseaux comprenant plusieurs modèles et le réseau de collaboration susmentionné, afin de déterminer les propriétés structurelles utiles à la promotion de la coopération et les mécanismes responsables du maintien de celle-ci. Je mets en évidence le fait que, pour ne pas succomber à la défection, les coopérateurs exploitent dans la mesure du possible l'hétérogénéité des réseaux sociaux en termes de degré ainsi que la structure de communautés sous-jacente de ces mêmes réseaux. Finalement, je montre que le niveau de coopération et sa stabilité dépendent non seulement du jeu joué, mais aussi des règles de la dynamique évolutionnaire utilisées et du calcul du bénéfice d'un individu.
Resumo:
In the plant-beneficial soil bacterium and biocontrol model organism Pseudomonas fluorescens CHA0, the GacS/GacA two-component system upregulates the production of biocontrol factors, i.e. antifungal secondary metabolites and extracellular enzymes, under conditions of slow, non-exponential growth. When activated, the GacS/GacA system promotes the transcription of a small regulatory RNA (RsmZ), which sequesters the small RNA-binding protein RsmA, a translational regulator of genes involved in biocontrol. The gene for a second GacA-regulated small RNA (RsmY) was detected in silico in various pseudomonads, and was cloned from strain CHA0. RsmY, like RsmZ, contains several characteristic GGA motifs. The rsmY gene was expressed in strain CHA0 as a 118 nt transcript which was most abundant in stationary phase, as revealed by Northern blot and transcriptional fusion analysis. Transcription of rsmY was enhanced by the addition of the strain's own supernatant extract containing a quorum-sensing signal and was abolished in gacS or gacA mutants. An rsmA mutation led to reduced rsmY expression, via a gacA-independent mechanism. Overexpression of rsmY restored the expression of target genes (hcnA, aprA) to gacS or gacA mutants. Whereas mutants deleted for either the rsmY or the rsmZ structural gene were not significantly altered in the synthesis of extracellular products (hydrogen cyanide, 2,4-diacetylphloroglucinol, exoprotease), an rsmY rsmZ double mutant was strongly impaired in this production and in its biocontrol properties in a cucumber-Pythium ultimum microcosm. Mobility shift assays demonstrated that multiple molecules of RsmA bound specifically to RsmY and RsmZ RNAs. In conclusion, two small, untranslated RNAs, RsmY and RsmZ, are key factors that relieve RsmA-mediated regulation of secondary metabolism and biocontrol traits in the GacS/GacA cascade of strain CHA0.
Resumo:
Genome-scale metabolic network reconstructions are now routinely used in the study of metabolic pathways, their evolution and design. The development of such reconstructions involves the integration of information on reactions and metabolites from the scientific literature as well as public databases and existing genome-scale metabolic models. The reconciliation of discrepancies between data from these sources generally requires significant manual curation, which constitutes a major obstacle in efforts to develop and apply genome-scale metabolic network reconstructions. In this work, we discuss some of the major difficulties encountered in the mapping and reconciliation of metabolic resources and review three recent initiatives that aim to accelerate this process, namely BKM-react, MetRxn and MNXref (presented in this article). Each of these resources provides a pre-compiled reconciliation of many of the most commonly used metabolic resources. By reducing the time required for manual curation of metabolite and reaction discrepancies, these resources aim to accelerate the development and application of high-quality genome-scale metabolic network reconstructions and models.
Resumo:
Increased levels of oxidized low-density lipoproteins (oxLDL) contribute to the increased risk for atherosclerosis, which persists even after adjusting for traditional risk factors, among patients with ESRD. Regulatory T cells (CD4+/CD25+ Tregs), which down-regulate T cell responses to foreign and self-antigens, are protective in murine atherogenesis, but whether similar immunoregulation occurs in humans with ESRD is unknown. Because cellular defense systems against oxLDL involve proteolytic degradation, the authors investigated the role of oxLDL on proteasome activity of CD4+/CD25+ Tregs in patients with ESRD. CD4+/CD25+ Tregs isolated from uremic patients' peripheral blood, especially that of chronically hemodialyzed patients, failed to suppress cell proliferation, exhibited cell-cycle arrest, and entered apoptosis by altering proteasome activity. Treating CD4+/CD25+ Tregs with oxLDL or uremic serum ex vivo decreased the number and suppressive capacity of CD4+/CD25+ Tregs. In vitro, oxLDL promoted the accumulation of p27Kip1, the cyclin-dependent kinase inhibitor responsible for G1 cell cycle arrest, and increased apoptosis in a time- and concentration-dependent manner. In summary, proteasome inhibition by oxLDL leads to cell cycle arrest and apoptosis, dramatically affecting the number and suppressive capacity of CD4+/CD25+ Tregs in chronically hemodialyzed patients. This response may contribute to the immune dysfunction, microinflammation, and atherogenesis observed in patients with ESRD.