157 resultados para Niche modelling
Resumo:
BACKGROUND: Most available pharmacotherapies for alcohol-dependent patients target abstinence; however, reduced alcohol consumption may be a more realistic goal. Using randomized clinical trial (RCT) data, a previous microsimulation model evaluated the clinical relevance of reduced consumption in terms of avoided alcohol-attributable events. Using real-life observational data, the current analysis aimed to adapt the model and confirm previous findings about the clinical relevance of reduced alcohol consumption. METHODS: Based on the prospective observational CONTROL study, evaluating daily alcohol consumption among alcohol-dependent patients, the model predicted the probability of drinking any alcohol during a given day. Predicted daily alcohol consumption was simulated in a hypothetical sample of 200,000 patients observed over a year. Individual total alcohol consumption (TAC) and number of heavy drinking days (HDD) were derived. Using published risk equations, probabilities of alcohol-attributable adverse health events (e.g., hospitalizations or death) corresponding to simulated consumptions were computed, and aggregated for categories of patients defined by HDDs and TAC (expressed per 100,000 patient-years). Sensitivity analyses tested model robustness. RESULTS: Shifting from >220 HDDs per year to 120-140 HDDs and shifting from 36,000-39,000 g TAC per year (120-130 g/day) to 15,000-18,000 g TAC per year (50-60 g/day) impacted substantially on the incidence of events (14,588 and 6148 events avoided per 100,000 patient-years, respectively). Results were robust to sensitivity analyses. CONCLUSIONS: This study corroborates the previous microsimulation modeling approach and, using real-life data, confirms RCT-based findings that reduced alcohol consumption is a relevant objective for consideration in alcohol dependence management to improve public health.
Resumo:
OBJECTIVE: To quantify the relation between body mass index (BMI) and endometrial cancer risk, and to describe the shape of such a relation. DESIGN: Pooled analysis of three hospital-based case-control studies. SETTING: Italy and Switzerland. POPULATION: A total of 1449 women with endometrial cancer and 3811 controls. METHODS: Multivariate odds ratios (OR) and 95% confidence intervals (95% CI) were obtained from logistic regression models. The shape of the relation was determined using a class of flexible regression models. MAIN OUTCOME MEASURE: The relation of BMI with endometrial cancer. RESULTS: Compared with women with BMI 18.5 to <25 kg/m(2) , the odds ratio was 5.73 (95% CI 4.28-7.68) for women with a BMI ≥35 kg/m(2) . The odds ratios were 1.10 (95% CI 1.09-1.12) and 1.63 (95% CI 1.52-1.75) respectively for an increment of BMI of 1 and 5 units. The relation was stronger in never-users of oral contraceptives (OR 3.35, 95% CI 2.78-4.03, for BMI ≥30 versus <25 kg/m(2) ) than in users (OR 1.22, 95% CI 0.56-2.67), and in women with diabetes (OR 8.10, 95% CI 4.10-16.01, for BMI ≥30 versus <25 kg/m(2) ) than in those without diabetes (OR 2.95, 95% CI 2.44-3.56). The relation was best fitted by a cubic model, although after the exclusion of the 5% upper and lower tails, it was best fitted by a linear model. CONCLUSIONS: The results of this study confirm a role of elevated BMI in the aetiology of endometrial cancer and suggest that the risk in obese women increases in a cubic nonlinear fashion. The relation was stronger in never-users of oral contraceptives and in women with diabetes. TWEETABLE ABSTRACT: Risk of endometrial cancer increases with elevated body weight in a cubic nonlinear fashion.
Resumo:
Aim: Emerging polyploids may depend on environmental niche shifts for successful establishment. Using the alpine plant Ranunculus kuepferi as a model system, we explore the niche shift hypothesis at different spatial resolutions and in contrasting parts of the species range. Location: European Alps. Methods: We sampled 12 individuals from each of 102 populations of R. kuepferi across the Alps, determined their ploidy levels, derived coarse-grain (100x100m) environmental descriptors for all sampling sites by downscaling WorldClim maps, and calculated fine-scale environmental descriptors (2x2m) from indicator values of the vegetation accompanying the sampled individuals. Both coarse and fine-scale variables were further computed for 8239 vegetation plots from across the Alps. Subsequently, we compared niche optima and breadths of diploid and tetraploid cytotypes by combining principal components analysis and kernel smoothing procedures. Comparisons were done separately for coarse and fine-grain data sets and for sympatric, allopatric and the total set of populations. Results: All comparisons indicate that the niches of the two cytotypes differ in optima and/or breadths, but results vary in important details. The whole-range analysis suggests differentiation along the temperature gradient to be most important. However, sympatric comparisons indicate that this climatic shift was not a direct response to competition with diploid ancestors. Moreover, fine-grained analyses demonstrate niche contraction of tetraploids, especially in the sympatric range, that goes undetected with coarse-grained data. Main conclusions: Although the niche optima of the two cytotypes differ, separation along ecological gradients was probably less decisive for polyploid establishment than a shift towards facultative apomixis, a particularly effective strategy to avoid minority cytotype exclusion. In addition, our results suggest that coarse-grained analyses overestimate niche breadths of widely distributed taxa. Niche comparison analyses should hence be conducted at environmental data resolutions appropriate for the organism and question under study.
Resumo:
Climate change affects the rate of insect invasions as well as the abundance, distribution and impacts of such invasions on a global scale. Among the principal analytical approaches to predicting and understanding future impacts of biological invasions are Species Distribution Models (SDMs), typically in the form of correlative Ecological Niche Models (ENMs). An underlying assumption of ENMs is that species-environment relationships remain preserved during extrapolations in space and time, although this is widely criticised. The semi-mechanistic modelling platform, CLIMEX, employs a top-down approach using species ecophysiological traits and is able to avoid some of the issues of extrapolation, making it highly applicable to investigating biological invasions in the context of climate change. The tephritid fruit flies (Diptera: Tephritidae) comprise some of the most successful invasive species and serious economic pests around the world. Here we project 12 tephritid species CLIMEX models into future climate scenarios to examine overall patterns of climate suitability and forecast potential distributional changes for this group. We further compare the aggregate response of the group against species-specific responses. We then consider additional drivers of biological invasions to examine how invasion potential is influenced by climate, fruit production and trade indices. Considering the group of tephritid species examined here, climate change is predicted to decrease global climate suitability and to shift the cumulative distribution poleward. However, when examining species-level patterns, the predominant directionality of range shifts for 11 of the 12 species is eastward. Most notably, management will need to consider regional changes in fruit fly species invasion potential where high fruit production, trade indices and predicted distributions of these flies overlap.
Resumo:
Landslide processes can have direct and indirect consequences affecting human lives and activities. In order to improve landslide risk management procedures, this PhD thesis aims to investigate capabilities of active LiDAR and RaDAR sensors for landslides detection and characterization at regional scales, spatial risk assessment over large areas and slope instabilities monitoring and modelling at site-specific scales. At regional scales, we first demonstrated recent boat-based mobile LiDAR capabilities to model topography of the Normand coastal cliffs. By comparing annual acquisitions, we validated as well our approach to detect surface changes and thus map rock collapses, landslides and toe erosions affecting the shoreline at a county scale. Then, we applied a spaceborne InSAR approach to detect large slope instabilities in Argentina. Based on both phase and amplitude RaDAR signals, we extracted decisive information to detect, characterize and monitor two unknown extremely slow landslides, and to quantify water level variations of an involved close dam reservoir. Finally, advanced investigations on fragmental rockfall risk assessment were conducted along roads of the Val de Bagnes, by improving approaches of the Slope Angle Distribution and the FlowR software. Therefore, both rock-mass-failure susceptibilities and relative frequencies of block propagations were assessed and rockfall hazard and risk maps could be established at the valley scale. At slope-specific scales, in the Swiss Alps, we first integrated ground-based InSAR and terrestrial LiDAR acquisitions to map, monitor and model the Perraire rock slope deformation. By interpreting both methods individually and originally integrated as well, we therefore delimited the rockslide borders, computed volumes and highlighted non-uniform translational displacements along a wedge failure surface. Finally, we studied specific requirements and practical issues experimented on early warning systems of some of the most studied landslides worldwide. As a result, we highlighted valuable key recommendations to design new reliable systems; in addition, we also underlined conceptual issues that must be solved to improve current procedures. To sum up, the diversity of experimented situations brought an extensive experience that revealed the potential and limitations of both methods and highlighted as well the necessity of their complementary and integrated uses.
Resumo:
Given the dual role of many plant traits to tolerate both herbivore attack and abiotic stress, the climatic niche of a species should be integrated into the study of plant defense strategies. Here we investigate the impact of plant reproductive strategy and components of species' climatic niche on the rate of chemical defense evolution in the milkweeds using a common garden experiment of 49 species. We found that across Asclepias species, clonal reproduction repeatedly evolved in lower temperature conditions, in species generally producing low concentrations of a toxic defense (cardenolides). Additionally, we found that rates of cardenolide evolution were lower for clonal than for nonclonal species. We thus conclude that because the clonal strategy is based on survival, long generation times, and is associated with tolerance of herbivory, it may be an alternative to toxicity in colder ecosystems. Taken together, these results indicate that the rate of chemical defense evolution is influenced by the intersection of life-history strategy and climatic niches into which plants radiate.