273 resultados para Modified reflected normal loss function
Resumo:
BACKGROUND: Medialization of the cup with a respective increase in femoral offset has been proposed in THA to increase abductor moment arms. Insofar as there are potential disadvantages to cup medialization, it is important to ascertain whether the purported biomechanical benefits of cup medialization are large enough to warrant the downsides; to date, studies regarding this question have disagreed. QUESTIONS/PURPOSES: The purpose of this study was to quantify the effect of cup medialization with a compensatory increase in femoral offset compared with anatomic reconstruction for patients undergoing THA. We tested the hypothesis that there is a (linear) correlation between preoperative anatomic parameters and muscle moment arm increase caused by cup medialization. METHODS: Fifteen patients undergoing THA were selected, covering a typical range of preoperative femoral offsets. For each patient, a finite element model was built based on a preoperative CT scan. The model included the pelvis, femur, gluteus minimus, medius, and maximus. Two reconstructions were compared: (1) anatomic position of the acetabular center of rotation, and (2) cup medialization compensated by an increase in the femoral offset. Passive abduction-adduction and flexion-extension were simulated in the range of normal gait. Muscle moment arms were evaluated and correlated to preoperative femoral offset, acetabular offset, height of the greater trochanter (relative to femoral center of rotation), and femoral antetorsion angle. RESULTS: The increase of muscle moment arms caused by cup medialization varied among patients. Muscle moment arms increase by 10% to 85% of the amount of cup medialization for abduction-adduction and from -35% (decrease) to 50% for flexion-extension. The change in moment arm was inversely correlated (R(2) = 0.588, p = 0.001) to femoral antetorsion (anteversion), such that patients with less femoral antetorsion gained more in terms of hip muscle moments. No linear correlation was observed between changes in moment arm and other preoperative parameters in this series. CONCLUSIONS: The benefit of cup medialization is variable and depends on the individual anatomy. CLINICAL RELEVANCE: Cup medialization with compensatory increase of the femoral offset may be particularly effective in patients with less femoral antetorsion. However, cup medialization must be balanced against its tradeoffs, including the additional loss of medial acetabular bone stock, and eventual proprioceptive implications of the nonanatomic center of rotation and perhaps joint reaction forces. Clinical studies should better determine the relevance of small changes of moment arms on function and joint reaction forces.
Resumo:
GLUT2 expression is reduced in the pancreatic beta-cells of several diabetic animals. The transcriptional control of the gene in beta-cells involves at least two islet-specific DNA-binding proteins, GTIIa and PDX-1, which also transactivates the insulin, somatostatin and glucokinase genes. In this report, we assessed the DNA-binding activities of GTIIa and PDX-1 to their respective cis-elements of the GLUT2 promoter using nuclear extracts prepared from pancreatic islets of 12 week old db/db diabetic mice. We show that the decreased GLUT2 mRNA expression correlates with a decrease of the GTIIa DNA-binding activity, whereas the PDX-1 binding activity is increased. In these diabetic animals, insulin mRNA expression remains normal. The adjunction of dexamethasone to isolated pancreatic islets, a treatment previously shown to decrease PDX-1 expression in the insulin-secreting HIT-T15 cells, has no effect on the GTIIa and PDX-1 DNA-binding activities. These data suggest that the decreased activity of GTIIa, in contrast to PDX-1, may be a major initial step in the development of the beta-cell dysfunction in this model of diabetes.
Resumo:
Mouse mammary tumor virus (MMTV) encodes a superantigen (SAg) that promotes stable infection and virus transmission. Upon subcutaneous MMTV injection, infected B cells present SAg to SAg-reactive T cells leading to a strong local immune response in the draining lymph node (LN) that peaks after 6 d. We have used the reverse transcriptase inhibitor 3'-azido-3'-deoxythymidine (AZT) to dissect in more detail the mechanism of SAg-dependent enhancement of MMTV infection in this system. Our data show that no detectable B or T cell response to SAg occurs in AZT pretreated mice. However, if AZT treatment is delayed 1-2 d after MMTV injection, a normal SAg-dependent local immune response is observed on day 6. Quantitation of viral DNA in draining LN of these infected mice indicates that a 4,000-fold increase in the absolute numbers of infected cells occurs between days 2 and 6 despite the presence of AZT. Furthermore MMTV DNA was found preferentially in surface IgG+ B cells of infected mice and was not detectable in SAg-reactive T cells. Collectively our data suggest that MMTV infection occurs preferentially in B cells without SAg involvement and is completed 1-2 d after virus challenge. Subsequent amplification of MMTV infection between days 2 and 6 requires SAg expression and occurs in the absence of any further requirement for reverse transcription. We therefore conclude that clonal expansion of infected B cells via cognate interaction with SAg-reactive T cells is the predominant mechanism for increasing the level of MMTV infection. Since infected B cells display a memory (surface IgG+) phenotype, both clonal expansion and possibly longevity of the virus carrier cells may contribute to stable MMTV infection.
Resumo:
Study Objectives: "Gentle handling" has become a method of choice for 4-6 h sleep deprivation in mice, with repeated brief handling applied before sleep deprivation to induce habituation. To verify whether mice do indeed habituate was assess how 6 days of repeated brief handling impact on resting behavior, on stress, and on the subunit content of N-methyl-D-aspartate receptors (NMDARs) at hippocampal synapases, which is altered by sleep loss. We discuss whether repeated handling biases the outcome of subsequent sleep deprivation.Design: Adult C5BL/6J mice, maintained on a 12 h-12 h light-dark cycle, were left undistrubed for 3 days, then handled during 3 min daily for 6 days in the middle of the light phase. Mice were continuously monitored for their resting time serum conticosterona levels and synaptic NMDAR subunit composition were quantified.Results: Handling caused a similar to 25% reduction of resting time throughtout all handling days, After six, but not after one day of handling, mice had elevated serum corticosterone levels. Six-day handling augmented the presence of the NR2A subunit of NMDARs at hippocampal synapses.Conclusion: Repeated handling induces behavoir and neurochemical alterations that are absent in undisturbed animals. The presistently reduced resting time and the delayed increase in conticosterone levels indicate that mice do not habituate to handling over a 1-week period. Handling-induced modifications bias effects of gentle handling-induced sleep deprivation on sleep homeostasis, stress, glutamate receptor composition and signaling. A standardization of sleep deprivation procedures involving gengle handling will be important for unequivocally specifying how acute sleep loss affects brain function.
Resumo:
BACKGROUND: As a consequence of the increase in life expectancy, hepatobiliary surgeons have to deal with an emerging aged population. We aimed to analyze the liver function and outcome after right hepatectomy (RH) in patients over 70 years of age. METHODS: From January 2006 to December 2009, we prospectively collected data of 207 consecutive elective hepatectomies. In patients who had RH, cardiac risk was assessed by a dedicated preoperative workup. Liver failure (LF) was defined by the "fifty-fifty" criteria at postoperative day 5 (POD) and morbidity by the Clavien-Dindo classification. Liver function tests (LFTs) and short-term outcome were retrospectively analyzed in patients over (elderly group, EG) and younger (young group, YG) than 70 years of age. RESULTS: Eighty-seven consecutive RH were performed during the study period. Indication for surgery included 90 % malignancy in 47 % of patients requiring preoperative chemotherapy. ASA grade > 2 (44 vs. 16 %, p = 0.027), ischemic heart disease (17 vs. 5 %, p = 0.076), and preoperative cardiac failure (26 vs. 2 %, p < 0.001) were more frequent in the EG (n = 23) than in the YG (n = 64). Both groups were similar regarding rates of normal liver parenchyma, chemotherapy and intraoperative parameters. The overall morbidity rates were comparable, but the serious complication (grades III-V) rate was relatively higher in the EG (39 vs. 25 %, p = 0.199), particularly in patients with diabetes mellitus (100 vs. 29 %, p = 0.04) and those who had additional nonhepatic surgery (67 vs. 35 %, p = 0.110) and transfusions (44 vs. 30 %, p = 0.523). The 90-day mortality rate was similar (9 % in the EG vs. 3 % in the YG, p = 0.28) and was related to heart failure in the EG. LFTs showed a similar trend from POD 1 to 8, and patients ≥70 years of age had no liver failure. CONCLUSIONS: Age ≥70 years alone is not a contraindication to RH. However, major morbidity is particularly higher in the elderly with diabetes. This high-risk group should be closely monitored in the postoperative course. Liver function is not altered in the elderly patient after RH.
Resumo:
OBJECTIVE:: To evaluate the chromatic pupillary response as a means of assessing outer and inner retinal function in patients with retinitis pigmentosa (RP). DESIGN:: Evaluation of diagnostic technology. PARTICIPANTS:: Thirty-two patients with RP and visual loss and 43 normal subjects. METHODS:: Patients were tested with a chromatic pupillometer using red and blue lights (1, 10, and 100 cd/m(2)), and their pupil responses were compared with those from 43 normal subjects (reported previously). Visual field and electroretinography (ERG) results were examined and compared with the pupil responses. MAIN OUTCOME MEASURES:: The percent pupil contraction of the transient response to a low-intensity (1 cd/m(2)) blue light and high-intensity (100 cd/m(2)) red light and the sustained response to a high-intensity blue light was calculated for 1 eye of each subject. RESULTS:: The pupil responses to red and blue light at all intensities were recordable in all patients except 1, whose pupil responded only to bright blue light. There was a significant difference of the pupil response between patients with RP and normal subjects in testing conditions that emphasized rod (1 cd/m(2) blue light) or cone (100 cd/m(2) red light) contribution (P<0.001). Patients with a non-recordable scotopic ERG showed significantly reduced pupil responses (P<0.001) to low-intensity blue light (1 cd/m(2)). Patients with a non-recordable or abnormal photopic ERG showed significantly reduced pupil responses (P<0.05) to high-intensity red light (100 cd/m(2)). Patients with a nonrecordable ERG had the most visual field loss and reduced pupil responses. Unexpectedly, patients with RP showed a slower re-dilation of the pupil after termination of bright blue light compared with red light, a pattern not observed in normal subjects. CONCLUSIONS:: Pupil responses to red and blue light stimuli weighted to favor cone or rod input are significantly reduced in patients with RP but are still recordable in patients having a non-recordable ERG. In addition, outer photoreceptor disease appears to unmask a post-illumination pupillary constriction to bright blue light, most likely mediated by intrinsic activation of melanopsin ganglion cells. Chromatic pupillometry provides a novel, noninvasive method for following retinal functional status, particularly in patients with severe RP and non-recordable ERG. FINANCIAL DISCLOSURE(S):: Proprietary or commercial disclosure may be found after the references.
Resumo:
Microsatellites are important highly polymorphic genetic markers dispersed in the human genome. Using a panel of 22 (CA)n repeat microsatellite markers mapped to recurrent breakpoint cluster regions specifically involved in leukemia, we investigated 114 adult leukemias (25 acute lymphocytic leukemia [ALL], 32 acute myeloid leukemia [AML], 36 chronic lymphocytic leukemia [CLL], and 21 chronic myeloid leukemia [CML] in chronic phase) for somatic mutations at these loci. In each patient, DNA from fresh leukemia samples was analyzed alongside normal constitutive DNA from buccal epithelium. We detected loss of heterozygosity (LOH) in 81 of 114 patients (ALL 16/25, AML 25/32, CLL 30/36, CML 10/21). Deletions were most often seen in ALL at 11q23 and 19p13; in AML at 8q22 and 11q23; in CLL at 13q14.3, 11q13, and 11q23; and in CML at 3q26. Only six deletions were reported in 74 karyotypes analyzed, whereas in these same cases, 91 LOH events were detected by microsatellites. Of 26 leukemias with a normal karyotype, 16 nevertheless showed at least one LOH by microsatellite analysis. Replication errors were found in 10 of 114 patients (8.8%). Thus, microsatellite instability is rare in leukemia in contrast to many solid tumors. Our findings suggest that in adult leukemia, LOH may be an important genetic event in addition to typical chromosomal translocations. LOH may point to the existence of tumor suppressor genes involved in leukemogenesis to a degree that has hitherto been underestimated.
Resumo:
While the lesions produced by transmyocardial laser revascularisation (TMLR) induce scar formation, it is important to determine whether this procedure can be deleterious for the left-ventricular function, which is already impaired by the underlying ischaemic process in some patients. Ten channels were drilled in the left lateral wall of the hearts of ten pigs (mean weight, 61 +/- 8.2kg) with a Holmium:YAG laser. Haemodynamic measurements and echocardiographic assessment of left-ventricular function were performed before the TMLR procedure, 5 and 30 min after, and lastly after 5 min of pacing at a rate increased by 30% of the baseline value. Echocardiographic assessment was in the short axis at the level of the laser channels, and included left-ventricular ejection fraction and segmental wall motility of the lasered area (scale 0-3:0 = normal 1 = hypokinesia, 2 = akinesia, 3 = dyskinesia). Values at 5 and 30 min were compared with baseline values; the difference was considered significant if p < 0.05. Haemodynamical values were stable throughout all the procedures. The ejection fraction showed a slight but significant decrease 5 min after the creation of the channels (60.4 +/- 6.8% vs 54 +/- 7.6%, p=0.02) and recovered at 30min. The segmental motility score of the involved areas increased to 1 after 5 min in five animals, and came back to 0 at 30 min except in one animal. Even with pacing no segmental dysfunction occurred. The reversibility of the segmental hypokinesia induced by TMLR, as well as the absence of pace-induced dysfunction 30 min after the procedure strongly suggest the inocuity of TMLR in this experimental set-up.
Resumo:
TGF-β and myostatin are the two most important regulators of muscle growth. Both growth factors have been shown to signal through a Smad3-dependent pathway. However to date, the role of Smad3 in muscle growth and differentiation is not investigated. Here, we demonstrate that Smad3-null mice have decreased muscle mass and pronounced skeletal muscle atrophy. Consistent with this, we also find increased protein ubiquitination and elevated levels of the ubiquitin E3 ligase MuRF1 in muscle tissue isolated from Smad3-null mice. Loss of Smad3 also led to defective satellite cell (SC) functionality. Smad3-null SCs showed reduced propensity for self-renewal, which may lead to a progressive loss of SC number. Indeed, decreased SC number was observed in skeletal muscle from Smad3-null mice showing signs of severe muscle wasting. Further in vitro analysis of primary myoblast cultures identified that Smad3-null myoblasts exhibit impaired proliferation, differentiation and fusion, resulting in the formation of atrophied myotubes. A search for the molecular mechanism revealed that loss of Smad3 results in increased myostatin expression in Smad3-null muscle and myoblasts. Given that myostatin is a negative regulator, we hypothesize that increased myostatin levels are responsible for the atrophic phenotype in Smad3-null mice. Consistent with this theory, inactivation of myostatin in Smad3-null mice rescues the muscle atrophy phenotype.
Resumo:
GLUT8 is a glucose transporter isoform expressed at high levels in testis; at intermediate levels in the brain, including the hippocampus; and at lower levels in the heart and several other tissues. GLUT8 is located in an intracellular compartment and does not appear to translocate to the cell surface, except in blastocysts, where insulin has been reported to induce its surface expression. Here, we generated mice with inactivation of the glut8 gene. We showed that expression of GLUT8 was not required for normal embryonic development and that glut8-/- mice had normal postnatal development, glucose homeostasis, and response to mild stress. Adult glut8-/- mice showed increased proliferation of hippocampal cells but no defect in memory acquisition and retention. Absence of GLUT8 from the heart did not alter heart size and morphology but led to an increase in P-wave duration, which was not associated with abnormal Nav1.5 Na+ channel or connexin expression. Thus, absence of GLUT8 expression in the mouse caused complex but mild physiological alterations.
Resumo:
Obesity and insulin resistance represent a problem of utmost clinical significance worldwide. Insulin-resistant states are characterized by the inability of insulin to induce proper signal transduction leading to defective glucose uptake in skeletal muscle tissue and impaired insulin-induced vasodilation. In various pathophysiological models, melatonin interacts with crucial molecules of the insulin signaling pathway, but its effects on glucose homeostasis are not known. In a diet-induced mouse model of insulin resistance and normal chow-fed control mice, we sought to assess the effects of an 8-wk oral treatment with melatonin on insulin and glucose tolerance and to understand underlying mechanisms. In high-fat diet-fed mice, but not in normal chow-fed control mice, melatonin significantly improved insulin sensitivity and glucose tolerance, as evidenced by a higher rate of glucose infusion to maintain euglycemia during hyperinsulinemic clamp studies and an attenuated hyperglycemic response to an ip glucose challenge. Regarding underlying mechanisms, we found that melatonin restored insulin-induced vasodilation to skeletal muscle, a major site of glucose utilization. This was due, at least in part, to the improvement of insulin signal transduction in the vasculature, as evidenced by increased insulin-induced phosphorylation of Akt and endoethelial nitric oxide synthase in aortas harvested from melatonin-treated high-fat diet-fed mice. In contrast, melatonin had no effect on the ability of insulin to promote glucose uptake in skeletal muscle tissue in vitro. These data demonstrate for the first time that in a diet-induced rodent model of insulin resistance, melatonin improves glucose homeostasis by restoring the vascular action of insulin.
Resumo:
Myelination requires a massive increase in glial cell membrane synthesis. Here we demonstrate that the acute phase of myelin lipid synthesis is regulated by SREBP cleavage activation protein (SCAP), an activator of sterol regulatory element-binding proteins (SREBPs). Deletion of SCAP in Schwann cells led to a loss of SREBP-mediated gene expression, congenital hypomyelination and abnormal gait. Interestingly, aging SCAP mutant mice showed partial regain of function; they exhibited improved gait and produced small amounts of myelin indicating a slow SCAP-independent uptake of external lipids. Accordingly, extracellular lipoproteins promoted myelination by SCAP mutant Schwann cells. However, SCAP mutant myelin never reached normal thickness and had biophysical abnormalities concordant with abnormal lipid composition. These data demonstrate that SCAP mediated regulation of glial lipogenesis is key to the proper synthesis of myelin membrane. The described defects in SCAP mutant myelination provide new insights into the pathogenesis, and open new avenues for treatment strategies, of peripheral neuropathies associated with lipid metabolic disorders.
Resumo:
Bronchiolitis obliterans (BO) following allogeneic haematopoietic stem cell transplantation (HSCT) affects peripheral airways. Detection of BO is presently delayed by the low sensitivity of spirometry. We examined the relationship between peripheral airway function and time since HSCT, and compared it with spirometry and clinical indices in 33 clinically stable allogeneic HSCT recipients. The following measurements were performed: lung function, exhaled nitric oxide, forced oscillatory respiratory system resistance and reactance, acinar (S(acin)) and conductive airways ventilation heterogeneity and lung clearance index (LCI) measured by multiple breath nitrogen washout. 22 patients underwent repeat visits from which short-term changes were examined. Median time post HSCT was 12 months. Eight patients were clinically diagnosed as having BO. In multivariate analysis, time since HSCT was predicted by S(acin) and forced expiratory volume in 1 s % predicted. 20 patients had abnormal S(acin) with normal spirometry, whereas none had airflow obstruction with normal S(acin). S(acin) and LCI were the only measures to change significantly between two visits, with both worsening. Change in S(acin) was the only parameter to correlate with change in chronic graft-versus-host disease grade. In conclusion, peripheral airways ventilation heterogeneity worsens with time after HSCT. S(acin) may be more sensitive than spirometry in detecting BO at an early stage, which needs confirmation in a prospective study.
Resumo:
OBJECTIVE: To identify clinical and pupillographic features of patients with a relative afferent pupillary defect (RAPD) without visual acuity or visual field loss caused by a lesion in the dorsal midbrain. DESIGN: Experimental study. PARTICIPANTS AND CONTROLS: Four patients with a dorsal midbrain lesion who had normal visual fields and a clinically detectable RAPD. METHODS: The pupil response from full-field and hemifield light stimulation over a range of light intensities was measured by computerized binocular pupillography. MAIN OUTCOME MEASURES: The mean of the direct and consensual pupil response to full-field and hemifield light stimulation was plotted as a function of stimulus light intensity. RESULTS: All 4 subjects showed decreased pupillographic responses at all intensities to full-field light stimulation in the eye with the clinical RAPD. The pupillographic responses to hemifield stimulation showed a homonymous pattern of deficit on the side ipsilateral to the RAPD, similar to that observed in a previously reported patient with an optic tract lesion. CONCLUSIONS: The basis of a midbrain RAPD is the nasal-temporal asymmetry of pupillomotor input that becomes manifest when a unilateral postchiasmal lesion interrupts homonymously paired fibers traveling in the contralateral optic tract or midbrain pathway to the pupillomotor center, respectively. The pupillographic characteristics of an RAPD resulting from a dorsal midbrain lesion thus resemble those of an RAPD resulting from a unilateral optic tract lesion, but without the homonymous visual field defect. FINANCIAL DISCLOSURE(S): The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Resumo:
A general consensus acknowledges that drug consumption (including alcohol, tobacco, and illicit drugs) constitutes the leading cause of preventable death worldwide. But the global burden of drug abuse extends the mortality statistics. Indeed, the comorbid long-term debilitating effects of the disease also significantly deteriorate the quality of life of individuals suffering from addiction disorders. Despite the large body of evidence delineating the cellular and molecular adaptations induced by chronic drug consumption, the brain mechanisms responsible for drug craving and relapse remain insufficiently understood, and even the most recent developments in the field have not brought significant improvement in the management of drug dependence. Though, recent preclinical evidence suggests that disrupting the hypocretin (orexin) system may serve as an anticraving medication therapy. Here, we discuss how the hypocretins, which orchestrate normal wakefulness, metabolic health and the execution of goal-oriented behaviors, may be compromised and contribute to elicit compulsive drug seeking. We propose an overview on the most recent studies demonstrating an important role for the hypocretin neuropeptide system in the regulation of drug reward and the prevention of drug relapse, and we question the relevance of disrupting the hypocretin system to alleviate symptoms of drug addiction.