209 resultados para MICRO-CT IMAGING
Resumo:
INTRODUCTION: Intravoxel incoherent motion (IVIM) imaging is an MRI perfusion technique that uses a diffusion-weighted sequence with multiple b values and a bi-compartmental signal model to measure the so-called pseudo-diffusion of blood caused by its passage through the microvascular network. The goal of the current study was to assess the feasibility of IVIM perfusion fraction imaging in patients with acute stroke. METHODS: Images were collected in 17 patients with acute stroke. Exclusion criteria were onset of symptoms to imaging >5 days, hemorrhagic transformation, infratentorial lesions, small lesions <0.5 cm in minimal diameter and hemodynamic instability. IVIM imaging was performed at 3 T, using a standard spin-echo Stejskal-Tanner pulsed gradients diffusion-weighted sequence, using 16 b values from 0 to 900 s/mm(2). Image quality was assessed by two radiologists, and quantitative analysis was performed in regions of interest placed in the stroke area, defined by thresholding the apparent diffusion coefficient maps, as well as in the contralateral region. RESULTS: IVIM perfusion fraction maps showed an area of decreased perfusion fraction f in the region of decreased apparent diffusion coefficient. Quantitative analysis showed a statistically significant decrease in both IVIM perfusion fraction f (0.026 ± 0.019 vs. 0.056 ± 0.025, p = 2.2 · 10(-6)) and diffusion coefficient D compared with the contralateral side (3.9 ± 0.79 · 10(-4) vs. 7.5 ± 0.86 · 10(-4) mm(2)/s, p = 1.3 · 10(-20)). CONCLUSION: IVIM perfusion fraction imaging is feasible in acute stroke. IVIM perfusion fraction is significantly reduced in the visible infarct. Further studies should evaluate the potential for IVIM to predict clinical outcome and treatment response.
Resumo:
A 35-year-old drug addict was found dead in a public toilet with a ruptured groin, which was later diagnosed to be a leaking pseudo-aneurysm. Investigation at the scene revealed impressive external hemorrhage related to a groin wound. Post-mortem computed tomography angiography demonstrated an aneurysm of the right femoral artery with leak of contrast liquid. Signs of blood loss were evident at autopsy, and histological examination revealed necrosis and rupture of the pseudo-aneurysm. Toxicological analyses were positive for methadone, cocaine, citalopram, and benzodiazepines. This is the first case report in the literature of a ruptured femoral pseudo-aneurysm with a post-mortem radiological diagnosis.
Resumo:
Image quality in magnetic resonance imaging (MRI) is considerably affected by motion. Therefore, motion is one of the most common sources of artifacts in contemporary cardiovascular MRI. Such artifacts in turn may easily lead to misinterpretations in the images and a subsequent loss in diagnostic quality. Hence, there is considerable research interest in strategies that help to overcome these limitations at minimal cost in time, spatial resolution, temporal resolution, and signal-to-noise ratio. This review summarizes and discusses the three principal sources of motion: the beating heart, the breathing lungs, and bulk patient movement. This is followed by a comprehensive overview of commonly used compensation strategies for these different types of motion. Finally, a summary and an outlook are provided.
Resumo:
Since 1895, when X-rays were discovered, ionizing radiation became part of our life. Its use in medicine has brought significant health benefits to the population globally. The benefit of any diagnostic procedure is to reduce the uncertainty about the patient's health. However, there are potential detrimental effects of radiation exposure. Therefore, radiation protection authorities have become strict regarding the control of radiation risks.¦There are various situations where the radiation risk needs to be evaluated. International authority bodies point to the increasing number of radiologic procedures and recommend population surveys. These surveys provide valuable data to public health authorities which helps them to prioritize and focus on patient groups in the population that are most highly exposed. On the other hand, physicians need to be aware of radiation risks from diagnostic procedures in order to justify and optimize the procedure and inform the patient.¦The aim of this work was to examine the different aspects of radiation protection and investigate a new method to estimate patient radiation risks.¦The first part of this work concerned radiation risk assessment from the regulatory authority point of view. To do so, a population dose survey was performed to evaluate the annual population exposure. This survey determined the contribution of different imaging modalities to the total collective dose as well as the annual effective dose per caput. It was revealed that although interventional procedures are not so frequent, they significantly contribute to the collective dose. Among the main results of this work, it was shown that interventional cardiological procedures are dose-intensive and therefore more attention should be paid to optimize the exposure.¦The second part of the project was related to the patient and physician oriented risk assessment. In this part, interventional cardiology procedures were studied by means of Monte Carlo simulations. The organ radiation doses as well as effective doses were estimated. Cancer incidence risks for different organs were calculated for different sex and age-at-exposure using the lifetime attributable risks provided by the Biological Effects of Ionizing Radiations Report VII. Advantages and disadvantages of the latter results were examined as an alternative method to estimate radiation risks. The results show that this method is the most accurate, currently available, to estimate radiation risks. The conclusions of this work may guide future studies in the field of radiation protection in medicine.¦-¦Depuis la découverte des rayons X en 1895, ce type de rayonnement a joué un rôle important dans de nombreux domaines. Son utilisation en médecine a bénéficié à la population mondiale puisque l'avantage d'un examen diagnostique est de réduire les incertitudes sur l'état de santé du patient. Cependant, leur utilisation peut conduire à l'apparition de cancers radio-induits. Par conséquent, les autorités sanitaires sont strictes quant au contrôle du risque radiologique.¦Le risque lié aux radiations doit être estimé dans différentes situations pratiques, dont l'utilisation médicale des rayons X. Les autorités internationales de radioprotection indiquent que le nombre d'examens et de procédures radiologiques augmente et elles recommandent des enquêtes visant à déterminer les doses de radiation délivrées à la population. Ces enquêtes assurent que les groupes de patients les plus à risque soient prioritaires. D'un autre côté, les médecins ont également besoin de connaître le risque lié aux radiations afin de justifier et optimiser les procédures et informer les patients.¦Le présent travail a pour objectif d'examiner les différents aspects de la radioprotection et de proposer une manière efficace pour estimer le risque radiologique au patient.¦Premièrement, le risque a été évalué du point de vue des autorités sanitaires. Une enquête nationale a été réalisée pour déterminer la contribution des différentes modalités radiologiques et des divers types d'examens à la dose efficace collective due à l'application médicale des rayons X. Bien que les procédures interventionnelles soient rares, elles contribuent de façon significative à la dose délivrée à la population. Parmi les principaux résultats de ce travail, il a été montré que les procédures de cardiologie interventionnelle délivrent des doses élevées et devraient donc être optimisées en priorité.¦La seconde approche concerne l'évaluation du risque du point de vue du patient et du médecin. Dans cette partie, des procédures interventionnelles cardiaques ont été étudiées au moyen de simulations Monte Carlo. La dose délivrée aux organes ainsi que la dose efficace ont été estimées. Les risques de développer des cancers dans plusieurs organes ont été calculés en fonction du sexe et de l'âge en utilisant la méthode établie dans Biological Effects of Ionizing Radiations Report VII. Les avantages et inconvénients de cette nouvelle technique ont été examinés et comparés à ceux de la dose efficace. Les résultats ont montré que cette méthode est la plus précise actuellement disponible pour estimer le risque lié aux radiations. Les conclusions de ce travail pourront guider de futures études dans le domaine de la radioprotection en médicine.
Resumo:
Coronary MR imaging is a promising noninvasive technique for the combined assessment of coronary artery anatomy and function. Anomalous coronary arteries and aneurysms can reliably be assessed in clinical practice using coronary MR imaging and the presence of significant left main or proximal multivessel coronary artery disease detected. Technical challenges that need to be addressed are further improvements in motion suppression and abbreviated scanning times aimed at improving spatial resolution and patient comfort. The development of new and specific contrast agents, high-field MR imaging with improved spatial resolution, and continued progress in MR imaging methods development will undoubtedly lead to further progress toward the noninvasive and comprehensive assessment of coronary atherosclerotic disease.
Resumo:
In recent years, modern techniques of medical imaging such as MDCT (multidetector-computed tomography) and MRI (magnetic resonance imaging) have pioneered post mortem (pm) investigations, especially in forensic medicine. Particularly pm angiography permits investigating the vascular system in a way which is not possible by performing only conventional autopsy. Beside these radiological methods, other modem visualizing techniques like the three dimensional (3D) surface scan have been implemented in order perform reconstructions of complex cases. By the use of pm imaging techniques, more objective and accurate documentations can be realized that permit an increase of quality in forensic investigations.
Resumo:
Purpose. We evaluated the influence of the time between low-dose gadolinium (Gd) contrast administration and coronary vessel wall enhancement (LGE) detected by 3T magnetic resonance imaging (MRI) in healthy subjects and patients with coronary artery disease (CAD). Materials and Methods. Four healthy subjects (4 men, mean age 29 ± 3 years and eleven CAD patients (6 women, mean age 61 ± 10 years) were studied on a commercial 3.0 Tesla (T) whole-body MR imaging system (Achieva 3.0 T; Philips, Best, The Netherlands). T1-weighted inversion-recovery coronary magnetic resonance imaging (MRI) was repeated up to 75 minutes after administration of low-dose Gadolinium (Gd) (0.1 mmol/kg Gd-DTPA). Results. LGE was seen in none of the healthy subjects, however in all of the CAD patients. In CAD patients, fifty-six of 62 (90.3%) segments showed LGE of the coronary artery vessel wall at time-interval 1 after contrast. At time-interval 2, 34 of 42 (81.0%) and at time-interval 3, 29 of 39 evaluable segments (74.4%) were enhanced. Conclusion. In this work, we demonstrate LGE of the coronary artery vessel wall using 3.0 T MRI after a single, low-dose Gd contrast injection in CAD patients but not in healthy subjects. In the majority of the evaluated coronary segments in CAD patients, LGE of the coronary vessel wall was already detectable 30-45 minutes after administration of the contrast agent.
Resumo:
Background: CMR has recently emerged as a robust and reliable technique to assess coronary artery disease (CAD). A negative perfusion CMR test predicts low event rates of 0.3-0.5%/year. Invasive coronary angiography (CA) remains the "gold standard" for the evaluation of CAD in many countries.Objective: Assessing the costs of the two strategies in the European CMR registry for the work-up of known or suspected CAD from a health care payer perspective. Strategy 1) a CA to all patients or 2) a CA only to patients who are diagnosed positive for ischemia in a prior CMR.Method and results: Using data of the European CMR registry (20 hospitals, 11'040 consecutive patients) we calculated the proportion of patients who were diagnosed positive (20.6%), uncertain (6.5%), and negative (72.9%) after the CMR test in patients with known or suspected CAD (n=2'717). No other medical test was performed to patients who were negative for ischemia. Positive diagnosed patients had a coronary angiography. Those with uncertain diagnosis had additional tests (84.7%: stress echocardiography, 13.1%: CCT, 2.3% SPECT), these costs were added to the CMR strategy costs. Information from costs for tests in Germany and Switzerland were used. A sensibility analysis was performed for inpatient CA. For costs see figure. Results - costs.Discussion: The CMR strategy costs less than the CA strategy for the health insurance systems both, in Germany and Switzerland. While lower in costs, the CMR strategy is a non-invasive one, does not expose to radiation, and yields additional information on cardiac function, viability, valves, and great vessels. Developing the use of CMR instead of CA might imply some reduction in costs together with superior patient safety and comfort, and a better utilization of resources at the hospital level. Document introduit le : 01.12.2011
Resumo:
The purpose of this study was to determine the prognostic accuracy of perfusion computed tomography (CT), performed at the time of emergency room admission, in acute stroke patients. Accuracy was determined by comparison of perfusion CT with delayed magnetic resonance (MR) and by monitoring the evolution of each patient's clinical condition. Twenty-two acute stroke patients underwent perfusion CT covering four contiguous 10mm slices on admission, as well as delayed MR, performed after a median interval of 3 days after emergency room admission. Eight were treated with thrombolytic agents. Infarct size on the admission perfusion CT was compared with that on the delayed diffusion-weighted (DWI)-MR, chosen as the gold standard. Delayed magnetic resonance angiography and perfusion-weighted MR were used to detect recanalization. A potential recuperation ratio, defined as PRR = penumbra size/(penumbra size + infarct size) on the admission perfusion CT, was compared with the evolution in each patient's clinical condition, defined by the National Institutes of Health Stroke Scale (NIHSS). In the 8 cases with arterial recanalization, the size of the cerebral infarct on the delayed DWI-MR was larger than or equal to that of the infarct on the admission perfusion CT, but smaller than or equal to that of the ischemic lesion on the admission perfusion CT; and the observed improvement in the NIHSS correlated with the PRR (correlation coefficient = 0.833). In the 14 cases with persistent arterial occlusion, infarct size on the delayed DWI-MR correlated with ischemic lesion size on the admission perfusion CT (r = 0.958). In all 22 patients, the admission NIHSS correlated with the size of the ischemic area on the admission perfusion CT (r = 0.627). Based on these findings, we conclude that perfusion CT allows the accurate prediction of the final infarct size and the evaluation of clinical prognosis for acute stroke patients at the time of emergency evaluation. It may also provide information about the extent of the penumbra. Perfusion CT could therefore be a valuable tool in the early management of acute stroke patients.
Resumo:
In type I diabetes mellitus, islet transplantation provides a moment-to-moment fine regulation of insulin. Success rates vary widely, however, necessitating suitable methods to monitor islet delivery, engraftment and survival. Here magnetic resonance-trackable magnetocapsules have been used simultaneously to immunoprotect pancreatic beta-cells and to monitor, non-invasively in real-time, hepatic delivery and engraftment by magnetic resonance imaging (MRI). Magnetocapsules were detected as single capsules with an altered magnetic resonance appearance on capsule rupture. Magnetocapsules were functional in vivo because mouse beta-cells restored normal glycemia in streptozotocin-induced diabetic mice and human islets induced sustained C-peptide levels in swine. In this large-animal model, magnetocapsules could be precisely targeted for infusion by using magnetic resonance fluoroscopy, whereas MRI facilitated monitoring of liver engraftment over time. These findings are directly applicable to ongoing improvements in islet cell transplantation for human diabetes, particularly because our magnetocapsules comprise clinically applicable materials.
Resumo:
Purpose: To evaluate the sensitivity of the perfusion parameters derived from Intravoxel Incoherent Motion (IVIM) MR imaging to hypercapnia-induced vasodilatation and hyperoxygenation-induced vasoconstriction in the human brain. Materials and Methods: This study was approved by the local ethics committee and informed consent was obtained from all participants. Images were acquired with a standard pulsed-gradient spin-echo sequence (Stejskal-Tanner) in a clinical 3-T system by using 16 b values ranging from 0 to 900 sec/mm(2). Seven healthy volunteers were examined while they inhaled four different gas mixtures known to modify brain perfusion (pure oxygen, ambient air, 5% CO(2) in ambient air, and 8% CO(2) in ambient air). Diffusion coefficient (D), pseudodiffusion coefficient (D*), perfusion fraction (f), and blood flow-related parameter (fD*) maps were calculated on the basis of the IVIM biexponential model, and the parametric maps were compared among the four different gas mixtures. Paired, one-tailed Student t tests were performed to assess for statistically significant differences. Results: Signal decay curves were biexponential in the brain parenchyma of all volunteers. When compared with inhaled ambient air, the IVIM perfusion parameters D*, f, and fD* increased as the concentration of inhaled CO(2) was increased (for the entire brain, P = .01 for f, D*, and fD* for CO(2) 5%; P = .02 for f, and P = .01 for D* and fD* for CO(2) 8%), and a trend toward a reduction was observed when participants inhaled pure oxygen (although P > .05). D remained globally stable. Conclusion: The IVIM perfusion parameters were reactive to hyperoxygenation-induced vasoconstriction and hypercapnia-induced vasodilatation. Accordingly, IVIM imaging was found to be a valid and promising method to quantify brain perfusion in humans. © RSNA, 2012.