187 resultados para Link prediction
Resumo:
Methods used to analyze one type of nonstationary stochastic processes?the periodically correlated process?are considered. Two methods of one-step-forward prediction of periodically correlated time series are examined. One-step-forward predictions made in accordance with an autoregression model and a model of an artificial neural network with one latent neuron layer and with an adaptation mechanism of network parameters in a moving time window were compared in terms of efficiency. The comparison showed that, in the case of prediction for one time step for time series of mean monthly water discharge, the simpler autoregression model is more efficient.
Resumo:
A published formula containing minimal aortic cross-sectional area and the flow deceleration pattern in the descending aorta obtained by cardiovascular magnetic resonance predicts significant coarctation of the aorta (CoA). However, the existing formula is complicated to use in clinical practice and has not been externally validated. Consequently, its clinical utility has been limited. The aim of this study was to derive a simple and clinically practical algorithm to predict severe CoA from data obtained by cardiovascular magnetic resonance. Seventy-nine consecutive patients who underwent cardiovascular magnetic resonance and cardiac catheterization for the evaluation of native or recurrent CoA at Children's Hospital Boston (n = 30) and the University of California, San Francisco (n = 49), were retrospectively reviewed. The published formula derived from data obtained at Children's Hospital Boston was first validated from data obtained at the University of California, San Francisco. Next, pooled data from the 2 institutions were analyzed, and a refined model was created using logistic regression methods. Finally, recursive partitioning was used to develop a clinically practical prediction tree to predict transcatheter systolic pressure gradient ≥ 20 mm Hg. Severe CoA was present in 48 patients (61%). Indexed minimal aortic cross-sectional area and heart rate-corrected flow deceleration time in the descending aorta were independent predictors of CoA gradient ≥ 20 mm Hg (p <0.01 for both). A prediction tree combining these variables reached a sensitivity and specificity of 90% and 76%, respectively. In conclusion, the presented prediction tree on the basis of cutoff values is easy to use and may help guide the management of patients investigated for CoA.
Resumo:
This paper presents the general regression neural networks (GRNN) as a nonlinear regression method for the interpolation of monthly wind speeds in complex Alpine orography. GRNN is trained using data coming from Swiss meteorological networks to learn the statistical relationship between topographic features and wind speed. The terrain convexity, slope and exposure are considered by extracting features from the digital elevation model at different spatial scales using specialised convolution filters. A database of gridded monthly wind speeds is then constructed by applying GRNN in prediction mode during the period 1968-2008. This study demonstrates that using topographic features as inputs in GRNN significantly reduces cross-validation errors with respect to low-dimensional models integrating only geographical coordinates and terrain height for the interpolation of wind speed. The spatial predictability of wind speed is found to be lower in summer than in winter due to more complex and weaker wind-topography relationships. The relevance of these relationships is studied using an adaptive version of the GRNN algorithm which allows to select the useful terrain features by eliminating the noisy ones. This research provides a framework for extending the low-dimensional interpolation models to high-dimensional spaces by integrating additional features accounting for the topographic conditions at multiple spatial scales. Copyright (c) 2012 Royal Meteorological Society.
Resumo:
PURPOSE: Positron emission tomography with (18)F-fluorodeoxyglucose (FDG-PET) was used to evaluate treatment response in patients with gastrointestinal stromal tumors (GIST) after administration of sunitinib, a multitargeted tyrosine kinase inhibitor, after imatinib failure. PATIENTS AND METHODS: Tumor metabolism was assessed with FDG-PET before and after the first 4 weeks of sunitinib therapy in 23 patients who received one to 12 cycles of sunitinib therapy (4 weeks of 50 mg/d, 2 weeks off). Treatment response was expressed as the percent change in maximal standardized uptake values (SUV). The primary end point of time to tumor progression was compared with early PET results on the basis of traditional Response Evaluation Criteria in Solid Tumors (RECIST) criteria. RESULTS: Progression-free survival (PFS) was correlated with early FDG-PET metabolic response (P < .0001). Using -25% and +25% thresholds for SUV variations from baseline, early FDG-PET response was stratified in metabolic partial response, metabolically stable disease, or metabolically progressive disease; median PFS rates were 29, 16, and 4 weeks, respectively. Similarly, when a single FDG-PET positive/negative was considered after 4 weeks of sunitinib, the median PFS was 29 weeks for SUVs less than 8 g/mL versus 4 weeks for SUVs of 8 g/mL or greater (P < .0001). None of the patients with metabolically progressive disease subsequently responded according to RECIST criteria. Multivariate analysis showed shorter PFS in patients who had higher residual SUVs (P < .0001), primary resistance to imatinib (P = .024), or nongastric GIST (P = .002), regardless of the mutational status of the KIT and PDGFRA genes. CONCLUSION: Week 4 FDG-PET is useful for early assessment of treatment response and for the prediction of clinical outcome. Thus, it offers opportunities to individualize and optimize patient therapy.
Resumo:
The usefulness of species distribution models (SDMs) in predicting impacts of climate change on biodiversity is difficult to assess because changes in species ranges may take decades or centuries to occur. One alternative way to evaluate the predictive ability of SDMs across time is to compare their predictions with data on past species distributions. We use data on plant distributions, fossil pollen and current and mid-Holocene climate to test the ability of SDMs to predict past climate-change impacts. We find that species showing little change in the estimated position of their realized niche, with resulting good model performance, tend to be dominant competitors for light. Different mechanisms appear to be responsible for among-species differences in model performance. Confidence in predictions of the impacts of climate change could be improved by selecting species with characteristics that suggest little change is expected in the relationships between species occurrence and climate patterns.
Resumo:
To compare the prediction of hip fracture risk of several bone ultrasounds (QUS), 7062 Swiss women > or =70 years of age were measured with three QUSs (two of the heel, one of the phalanges). Heel QUSs were both predictive of hip fracture risk, whereas the phalanges QUS was not. INTRODUCTION: As the number of hip fracture is expected to increase during these next decades, it is important to develop strategies to detect subjects at risk. Quantitative bone ultrasound (QUS), an ionizing radiation-free method, which is transportable, could be interesting for this purpose. MATERIALS AND METHODS: The Swiss Evaluation of the Methods of Measurement of Osteoporotic Fracture Risk (SEMOF) study is a multicenter cohort study, which compared three QUSs for the assessment of hip fracture risk in a sample of 7609 elderly ambulatory women > or =70 years of age. Two QUSs measured the heel (Achilles+; GE-Lunar and Sahara; Hologic), and one measured the heel (DBM Sonic 1200; IGEA). The Cox proportional hazards regression was used to estimate the hazard of the first hip fracture, adjusted for age, BMI, and center, and the area under the ROC curves were calculated to compare the devices and their parameters. RESULTS: From the 7609 women who were included in the study, 7062 women 75.2 +/- 3.1 (SD) years of age were prospectively followed for 2.9 +/- 0.8 years. Eighty women reported a hip fracture. A decrease by 1 SD of the QUS variables corresponded to an increase of the hip fracture risk from 2.3 (95% CI, 1.7, 3.1) to 2.6 (95% CI, 1.9, 3.4) for the three variables of Achilles+ and from 2.2 (95% CI, 1.7, 3.0) to 2.4 (95% CI, 1.8, 3.2) for the three variables of Sahara. Risk gradients did not differ significantly among the variables of the two heel QUS devices. On the other hand, the phalanges QUS (DBM Sonic 1200) was not predictive of hip fracture risk, with an adjusted hazard risk of 1.2 (95% CI, 0.9, 1.5), even after reanalysis of the digitalized data and using different cut-off levels (1700 or 1570 m/s). CONCLUSIONS: In this elderly women population, heel QUS devices were both predictive of hip fracture risk, whereas the phalanges QUS device was not.
Resumo:
Gene transfer in eukaryotic cells and organisms suffers from epigenetic effects that result in low or unstable transgene expression and high clonal variability. Use of epigenetic regulators such as matrix attachment regions (MARs) is a promising approach to alleviate such unwanted effects. Dissection of a known MAR allowed the identification of sequence motifs that mediate elevated transgene expression. Bioinformatics analysis implied that these motifs adopt a curved DNA structure that positions nucleosomes and binds specific transcription factors. From these observations, we computed putative MARs from the human genome. Cloning of several predicted MARs indicated that they are much more potent than the previously known element, boosting the expression of recombinant proteins from cultured cells as well as mediating high and sustained expression in mice. Thus we computationally identified potent epigenetic regulators, opening new strategies toward high and stable transgene expression for research, therapeutic production or gene-based therapies.
Resumo:
We investigated the moderating effect of family relationships on the links between maternal postpartum depression and child symptoms in a low-risk community sample of families with 3-month-old infants (n = 57). The level of maternal depression was assessed by the Montgomery-Asberg Depression Rating Scale from a clinical interview, child symptoms by the Symptom Check List completed by both parents, and family relationships by direct observation of father-mother-baby interactions (Lausanne Trilogue Play). Families were categorized as high coordination or low coordination from their overall coordination level throughout the play. Results showed no significant links between maternal depression level and child symptoms reported by both parents. Mothers with a high depressive level in high coordination families tended to report more symptoms in their child than did mothers with lower depressive scores, whereas this link was not found in low coordination families. Prevention perspectives and clinical implications of these results are discussed.
Resumo:
Epidemiological studies demonstrate an association between insulin resistance, hypertension and cardiovascular morbidity. In addition to its metabolic effects, insulin also has important cardiovascular actions. The sympathetic nervous system and the nitric oxide-l-arginine pathway have emerged as central players in the mediation of these actions. Over the past decade, the underlying mechanisms and the factors that may govern the interaction between insulin and these two major cardiovascular regulatory systems have been studied extensively in healthy people and insulin-resistant individuals. Here we summarize the current understanding and gaps in knowledge on these interactions. We propose that a genetic and/or acquired defect of nitric oxide synthesis could represent a central defect triggering many of the metabolic, vascular and sympathetic abnormalities characteristic of insulin-resistant states, all of which may predispose to cardiovascular disease.