301 resultados para Line loss
Resumo:
Teleost fishes provide the first unambiguous support for ancient whole-genome duplication in an animal lineage. Studies in yeast or plants have shown that the effects of such duplications can be mediated by a complex pattern of gene retention and changes in evolutionary pressure. To explore such patterns in fishes, we have determined by phylogenetic analysis the evolutionary origin of 675 Tetraodon duplicated genes assigned to chromosomes, using additional data from other species of actinopterygian fishes. The subset of genes, which was retained in double after the genome duplication, is enriched in development, signaling, behavior, and regulation functional categories. The evolutionary rate of duplicate fish genes appears to be determined by 3 forces: 1) fish proteins evolve faster than mammalian orthologs; 2) the genes kept in double after genome duplication represent the subset under strongest purifying selection; and 3) following duplication, there is an asymmetric acceleration of evolutionary rate in one of the paralogs. These results show that similar mechanisms are at work in fishes as in yeast or plants and provide a framework for future investigation of the consequences of duplication in fishes and other animals.
Resumo:
Chemical mass transfer was quantified in a metacarbonate xenolith enclosed within the granodiorite of the Qu,rigut massif (Pyrenees, France). Mass balance calculations suggest a strong decrease of CaO, SrO and CO(2) contents (up to -90%), correlated with a decrease of modal calcite content as the contact is approached. Most other chemical elements behave immobile during metasomatism. They are therefore passively enriched. Only a small increase of SiO(2), Al(2)O(3) and Fe(2)O(3) contents occurs in the immediate vicinity of the contact. Hence, in this study, skarn formation is characterized by the lack of large chemical element influx from the granitoid protolith. A large decrease of the initial carbonate volume (up to -86%) resulted from a combination of decarbonation reactions and loss of CaO and CO(2). The resulting volume change has potentially important consequences for the interpretation of stable isotope profiles: the isotope alteration could have occured over greater distances than those observed today.
Resumo:
SUMMARYDiabetes is characterized by insulin deficiency that results from the destruction of insulin-secreting pancreatic beta-cells (Type 1), or in part from beta-cell death and insulin secretion defects (Type 2). Therefore, understanding the mechanisms of beta cell neogenesis (to generate unlimited supply of beta cells for T1D transplantation] or identifying the specific genes that favors insulin secretion or beta-cell survival is of great importance for the management of diabetes. The transcriptional repressor RE-1 Silencing Transcription Factor (REST) restricts the expression of a large number of genes containing its binding element, called Repressor Element-1 (RE-1), to neurons and beta cells. To do so, REST is ubiquitously expressed but in neurons and beta cells. To identify these essential genes and their functional significance in beta cells, we have generated transgenic mice that express REST specifically in beta cells under the control of the rat insulin promoter (RIP-REST mice). This resulted in the repression of the RE-1- containing genes in beta cells, and we analyzed the consequences.We first showed that RIP-REST mice were glucose-intolerant because of a defective insulin secretion. To explain this defect, we identified that a subset of the REST target genes were necessary for insulin exocytosis, such as Snap25, Synaptotagmin (Syt) IX, Complexin II, and Ica512, and we further demonstrated that among the identified REST targets, Syt IV and VII were also involved in insulin release. We next analyzed a novel RIP-REST mouse line that featured diabetes and we showed that this defect was due to a major loss of beta-cell mass. To explain this phenotype, we identified REST target genes that were involved in beta-cell survival, such as Ibl, Irs2, Ica512 and Connexin36, and revealed that another REST target, Cdk5r2 is also involved in beta-cell protection. In a third part, we finally suggest that REST may be important for pancreatic endocrine differentiation, since transgenic mice expressing constitutive REST in pancreatic multipotent progenitors show impaired formation of Ngn3-expressing endocrine- committed precursors, and impaired formation of differentiated endocrine cells. Mapping the pattern of REST expression in wild type animals indicates that it is expressed in multipotent progenitors to become then excluded from endocrine cells. Preliminary results suggest that a downregulation of REST would result in relieved expression of at least the Mytl target, favoring subsequent acquisition of the endocrine competence by endocrine precursor cells.Thus, we propose that the REST/RE-1 system is an important feature for beta-cell neogenesis, function and survivalRESUMELe diabète se caractérise par une déficience en insuline qui résulte d'une destruction des cellules bêta (β) pancréatiques sécrétant l'insuline [Type 1], ou à un défaut de sécrétion d'insuline qui peut être associé à la mort des cellules β (Type 2). La compréhension des mécanismes de néogenèse des cellules β, ainsi que l'identification de gènes impliqués dans leur survie et dans le contrôle de la sécrétion d'insuline est donc importante pour le traitement du diabète. Le facteur de transcription de type répresseur, RE-1 Silencing Transcription Factor [REST], contribue à la spécificité d'expression dans les neurones et les cellules β, d'un grand nombre de gènes portant son motif de fixation, le Repressor Element-1 (RE-1). Pour cela, REST est exprimé dans toutes les cellules, sauf dans les neurones et les cellules β. Afin d'identifier les gènes cibles de REST ainsi que leur fonction au sein de la cellule β, nous avons généré des souris transgéniques qui expriment REST spécifiquement dans ces cellules, sous la dépendance du promoteur de l'insuline (souris RIP-REST]. Cette expression ectopique de REST a permis de diminuer l'expression des gènes contrôlés par REST, et d'en analyser les conséquences. Nous avons montré que les souris RIP-REST étaient intolérantes au glucose et que ceci était du à un défaut de sécrétion d'insuline. Pour expliquer ce phénotype, nous avons mis en évidence le fait que des gènes cibles de REST codent pour des protéines importantes pour l'exocytose de l'insuline, comme SNAP25, Synaptotagmin (Syt) IX, Complexin II ou ICA512. De plus, nous avons découvert deux nouvelles cibles de REST impliquées dans la sécrétion d'insuline, Syt IV et Syt VII. Par la suite, nous avons démontré qu'une nouvelle lignée de souris RIP-REST étaient atteintes d'un diabète sévère à cause d'une perte massive des cellules β. La disparition de ces cellules a été expliquée par l'identification de gènes cibles de REST impliqués dans la survie des cellules β, comme Ibl, Irs2, Ica512 ou la Connexine36. De plus, nous avons découvert qu'une nouvelle cible, Cdk5r2, était aussi impliquée dans la survie des cellules β. Dans une dernière partie, nous suggérons, grâce à l'analyse de nouvelles souris transgéniques exprimant constitutivement REST dans les cellules progénitrices du pancréas embryonnaire, que REST empêche la formation des précurseurs de cellules endocrines ainsi que la différenciation de ces cellules. L'analyse de l'expression de REST au cours du développement embryonnaire du pancréas indique que la diminution de l'expression de REST conduit en partie, à l'induction d'un de ses gènes cible Mytl, qui favorise la formation de précurseurs endocrines. Nous proposons donc que le système REST/RE-1 est important pour la génération, la fonction et la survie des cellules β.
Resumo:
Memo is a widely expressed 33-kDa protein required for heregulin (HRG)-, epidermal growth factor (EGF)-, and fibroblast growth factor (FGF)-induced cell motility. Studies in mouse embryonic fibroblasts, wild-type or knockout for Memo, were performed to further investigate the role of Memo downstream of FGFR. We demonstrated that Memo associates with the FGFR signalosome and is necessary for optimal activation of signaling. To uncover Memo's physiological role, Memo conditional-knockout mice were generated. These animals showed a reduced life span, increased insulin sensitivity, small stature, graying hair, alopecia, kyphosis, loss of subcutaneous fat, and loss of spermatozoa in the epididymis. Memo-knockout mice also have elevated serum levels of active vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D), and calcium compared to control littermates expressing Memo. In summary, the results from in vivo and in vitro models support the hypothesis that Memo is a novel regulator of FGFR signaling with a role in controlling 1,25(OH)2D production and normal calcium homeostasis.
46, XY gonadal dysgenesis: new SRY point mutation in two siblings with paternal germ line mosaicism.
Resumo:
Stoppa-Vaucher S, Ayabe T, Paquette J, Patey N, Francoeur D, Vuissoz J-M, Deladoëy J, Samuels ME, Ogata T, Deal CL. 46, XY gonadal dysgenesis: new SRY point mutation in two siblings with paternal germ line mosaicism. Familial recurrence risks are poorly understood in cases of de novo mutations. In the event of parental germ line mosaicism, recurrence risks can be higher than generally appreciated, with implications for genetic counseling and clinical practice. In the course of treating a female with pubertal delay and hypergonadotropic hypogonadism, we identified a new missense mutation in the SRY gene, leading to somatic feminization of this karyotypically normal XY individual. We tested a younger sister despite a normal onset of puberty, who also possessed an XY karyotype and the same SRY mutation. Imaging studies in the sister revealed an ovarian tumor, which was removed. DNA from the father's blood possessed the wild type SRY sequence, and paternity testing was consistent with the given family structure. A brother was 46, XY with a wild type SRY sequence strongly suggesting paternal Y-chromosome germline mosaicism for the mutation. In disorders of sexual development (DSDs), early diagnosis is critical for optimal psychological development of the affected patients. In this case, preventive karyotypic screening allowed early diagnosis of a gonadal tumor in the sibling prior to the age of normal puberty. Our results suggest that cytological or molecular diagnosis should be applied for siblings of an affected DSD individual.
Resumo:
AIMS: Retroviral-mediated gene therapy has been proposed as a primary or adjuvant treatment for advanced cancer, because retroviruses selectively infect dividing cells. Efficacy of retroviral-mediated gene transfer, however, is limited in vivo. Although packaging cell lines can produce viral vectors continuously, such allo- or xenogeneic cells are normally rejected when used in vivo. Encapsulation using microporous membranes can protect the packaging cells from rejection. In this study, we used an encapsulated murine packaging cell line to test the effects of in situ delivery of a retrovirus bearing the herpes simplex virus thymidine kinase suicide gene in a rat model of orthotopic glioblastoma. MATERIALS AND METHODS: To test gene transfer in vitro, encapsulated murine psi2-VIK packaging cells were co-cultured with baby hamster kidney (BHK) cells, and the percentage of transfected BHK cells was determined. For in vivo experiments, orthotopic C6 glioblastomas were established in Wistar rats. Capsules containing psi2-VIK cells were stereotaxically implanted into these tumours and the animals were treated with ganciclovir (GCV). Tumours were harvested 14 days after initiation of GCV therapy for morphometric analysis. RESULTS: Encapsulation of psi2-VIK cells increased transfection rates of BHK target cells significantly in vitro compared to psi2-VIK conditioned medium (3 x 10(6) vs 2.3 x 10(4) cells; P<0.001). In vivo treatment with encapsulated packaging cells resulted in 3% to 5% of C6 tumour cells transduced and 45% of tumour volume replaced by necrosis after GCV (P<0.01 compared to controls). CONCLUSION: In this experimental model of glioblastoma, encapsulation of a xenogeneic packaging cell line increased half-life and transduction efficacy of retrovirus-mediated gene transfer and caused significant tumour necrosis.
Resumo:
BACKGROUND: Congenital, nonepidermolytic cornification disorders phenotypically resembling human autosomal recessive ichthyosis have been described in purebred dog breeds, including Jack Russell terrier (JRT) dogs. One cause of gene mutation important to humans and dogs is transposon insertions. OBJECTIVES: To describe an autosomal recessive, severe nonepidermolytic ichthyosis resembling lamellar ichthyosis (LI) in JRT dogs due to insertion of a long interspersed nucleotide element (LINE-1) in the transglutaminase 1 (TGM1) gene. METHODS: Dogs were evaluated clinically, and skin samples were examined by light and electron microscopy. Phenotypic information and genotyping with a canine microsatellite marker suggested TGM1 to be a candidate gene. Genomic DNA samples and cDNA generated from epidermal RNA were examined. Consequences of the mutation were evaluated by Western blotting, quantitative reverse transcription-polymerase chain reaction (RT-PCR) and enzyme activity from cultured keratinocytes. RESULTS: Affected dogs had generalized severe hyperkeratosis. Histological examination defined laminated to compact hyperkeratosis without epidermolysis; ultrastructurally, cornified envelopes were thin. Affected dogs were homozygous for a 1980-bp insertion within intron 9 of TGM1. The sequence of the insertion was that of a canine LINE-1 element. Quantitative RT-PCR indicated a significant decrease in TGM1 mRNA in affected dogs compared with wild-type. TGM1 protein was markedly decreased on immunoblotting, and membrane-associated enzyme activity was diminished in affected dogs. CONCLUSIONS: Based on morphological and molecular features, this disease is homologous with TGM1-deficient LI in humans, clinically models LI better than the genetically modified mouse and represents its first spontaneous animal model. This is the first reported form of LI due to transposon insertion.
Resumo:
The reggie/flotillin proteins are implicated in membrane trafficking and, together with the cellular prion protein (PrP), in the recruitment of E-cadherin to cell contact sites. Here, we demonstrate that reggies, as well as PrP down-regulation, in epithelial A431 cells cause overlapping processes and abnormal formation of adherens junctions (AJs). This defect in cell adhesion results from reggie effects on Src tyrosine kinases and epidermal growth factor receptor (EGFR): loss of reggies reduces Src activation and EGFR phosphorylation at residues targeted by Src and c-cbl and leads to increased surface exposure of EGFR by blocking its internalization. The prolonged EGFR signaling at the plasma membrane enhances cell motility and macropinocytosis, by which junction-associated E-cadherin is internalized and recycled back to AJs. Accordingly, blockage of EGFR signaling or macropinocytosis in reggie-deficient cells restores normal AJ formation. Thus, by promoting EGFR internalization, reggies restrict the EGFR signaling involved in E-cadherin macropinocytosis and recycling and regulate AJ formation and dynamics and thereby cell adhesion.
NLRC5 deficiency selectively impairs MHC class I- dependent lymphocyte killing by cytotoxic T cells.
Resumo:
Nucleotide-binding oligomerization domain-like receptors (NLRs) are intracellular proteins involved in innate-driven inflammatory responses. The function of the family member NLR caspase recruitment domain containing protein 5 (NLRC5) remains a matter of debate, particularly with respect to NF-κB activation, type I IFN, and MHC I expression. To address the role of NLRC5, we generated Nlrc5-deficient mice (Nlrc5(Δ/Δ)). In this article we show that these animals exhibit slightly decreased CD8(+) T cell percentages, a phenotype compatible with deregulated MHC I expression. Of interest, NLRC5 ablation only mildly affected MHC I expression on APCs and, accordingly, Nlrc5(Δ/Δ) macrophages efficiently primed CD8(+) T cells. In contrast, NLRC5 deficiency dramatically impaired basal expression of MHC I in T, NKT, and NK lymphocytes. NLRC5 was sufficient to induce MHC I expression in a human lymphoid cell line, requiring both caspase recruitment and LRR domains. Moreover, endogenous NLRC5 localized to the nucleus and occupied the proximal promoter region of H-2 genes. Consistent with downregulated MHC I expression, the elimination of Nlrc5(Δ/Δ) lymphocytes by cytotoxic T cells was markedly reduced and, in addition, we observed low NLRC5 expression in several murine and human lymphoid-derived tumor cell lines. Hence, loss of NLRC5 expression represents an advantage for evading CD8(+) T cell-mediated elimination by downmodulation of MHC I levels-a mechanism that may be exploited by transformed cells. Our data show that NLRC5 acts as a key transcriptional regulator of MHC I in lymphocytes and support an essential role for NLRs in directing not only innate but also adaptive immune responses.
Resumo:
Marie Unna hereditary hypotrichosis (MUHH) is an autosomal dominant form of genetic hair loss. In a large Chinese family carrying MUHH, we identified a pathogenic initiation codon mutation in U2HR, an inhibitory upstream ORF in the 5' UTR of the gene encoding the human hairless homolog (HR). U2HR is predicted to encode a 34-amino acid peptide that is highly conserved among mammals. In 18 more families from different ancestral groups, we identified a range of defects in U2HR, including loss of initiation, delayed termination codon and nonsense and missense mutations. Functional analysis showed that these classes of mutations all resulted in increased translation of the main HR physiological ORF. Our results establish the link between MUHH and U2HR, show that fine-tuning of HR protein levels is important in control of hair growth, and identify a potential mechanism for preventing hair loss or promoting hair removal.
Resumo:
The present paper studies the probability of ruin of an insurer, if excess of loss reinsurance with reinstatements is applied. In the setting of the classical Cramer-Lundberg risk model, piecewise deterministic Markov processes are used to describe the free surplus process in this more general situation. It is shown that the finite-time ruin probability is both the solution of a partial integro-differential equation and the fixed point of a contractive integral operator. We exploit the latter representation to develop and implement a recursive algorithm for numerical approximation of the ruin probability that involves high-dimensional integration. Furthermore we study the behavior of the finite-time ruin probability under various levels of initial surplus and security loadings and compare the efficiency of the numerical algorithm with the computational alternative of stochastic simulation of the risk process. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The altered expression of the SOX2 transcription factor is associated with oncogenic or tumor suppressor functions in human cancers. This factor regulates the migration and invasion of different cancer cells. In this study we investigated the effect of constitutive SOX2 overexpression on the migration and adhesion capacity of embryonal teratocarcinoma NT2/D1 cells derived from a metastasis of a human testicular germ cell tumor. We detected that increased SOX2 expression changed the speed, mode and path of cell migration, but not the adhesion ability of NT2/D1 cells. Additionally, we demonstrated that SOX2 overexpression increased the expression of the tumor suppressor protein p53 and the HDM2 oncogene. Our results contribute to the better understanding of the effect of SOX2 on the behavior of tumor cells originating from a human testicular germ cell tumor. Considering that NT2/D1 cells resemble cancer stem cells in many features, our results could contribute to the elucidation of the role of SOX2 in cancer stem cells behavior and the process of metastasis.
Resumo:
Transfection of a human estrogen receptor cDNA expression vector (HEO) into cultured Xenopus kidney cells confers estrogen responsiveness to the recipient cells as demonstrated by the hormone dependent expression of co-transfected Xenopus vitellogenin-CAT chimeric genes. The estrogen stimulation of these vit-CAT genes is dependent upon the presence of the vitellogenin estrogen responsive element (ERE) in their 5' flanking region. Thus, functional human estrogen receptor (hER) can be synthesized in heterologous lower vertebrate cells and can act as a trans-acting regulatory factor that is necessary, together with estradiol, for the induction of the vit-CAT constructs in these cells. In addition, vitellogenin minigenes co-transfected with the HEO expression vector also respond to hormonal stimulation. Their induction is not higher than that of the vit-CAT chimeric genes. It suggests that in the Xenopus kidney cell line B 3.2, the structural parts of the vitellogenin minigenes do not play a role in the induction process. Furthermore, no stabilizing effect of estrogen on vitellogenin mRNA is observed in these cells. In contrast to the transfected genes, the endogenous chromosomal vitellogenin genes remain silent, demonstrating that in spite of the presence of the hER and the hormone, the conditions necessary for their activation are not fulfilled.