179 resultados para Lagrangian methods
Resumo:
Les catastrophes sont souvent perçues comme des événements rapides et aléatoires. Si les déclencheurs peuvent être soudains, les catastrophes, elles, sont le résultat d'une accumulation des conséquences d'actions et de décisions inappropriées ainsi que du changement global. Pour modifier cette perception du risque, des outils de sensibilisation sont nécessaires. Des méthodes quantitatives ont été développées et ont permis d'identifier la distribution et les facteurs sous- jacents du risque.¦Le risque de catastrophes résulte de l'intersection entre aléas, exposition et vulnérabilité. La fréquence et l'intensité des aléas peuvent être influencées par le changement climatique ou le déclin des écosystèmes, la croissance démographique augmente l'exposition, alors que l'évolution du niveau de développement affecte la vulnérabilité. Chacune de ses composantes pouvant changer, le risque est dynamique et doit être réévalué périodiquement par les gouvernements, les assurances ou les agences de développement. Au niveau global, ces analyses sont souvent effectuées à l'aide de base de données sur les pertes enregistrées. Nos résultats montrent que celles-ci sont susceptibles d'être biaisées notamment par l'amélioration de l'accès à l'information. Elles ne sont pas exhaustives et ne donnent pas d'information sur l'exposition, l'intensité ou la vulnérabilité. Une nouvelle approche, indépendante des pertes reportées, est donc nécessaire.¦Les recherches présentées ici ont été mandatées par les Nations Unies et par des agences oeuvrant dans le développement et l'environnement (PNUD, l'UNISDR, la GTZ, le PNUE ou l'UICN). Ces organismes avaient besoin d'une évaluation quantitative sur les facteurs sous-jacents du risque, afin de sensibiliser les décideurs et pour la priorisation des projets de réduction des risques de désastres.¦La méthode est basée sur les systèmes d'information géographique, la télédétection, les bases de données et l'analyse statistique. Une importante quantité de données (1,7 Tb) et plusieurs milliers d'heures de calculs ont été nécessaires. Un modèle de risque global a été élaboré pour révéler la distribution des aléas, de l'exposition et des risques, ainsi que pour l'identification des facteurs de risque sous- jacent de plusieurs aléas (inondations, cyclones tropicaux, séismes et glissements de terrain). Deux indexes de risque multiples ont été générés pour comparer les pays. Les résultats incluent une évaluation du rôle de l'intensité de l'aléa, de l'exposition, de la pauvreté, de la gouvernance dans la configuration et les tendances du risque. Il apparaît que les facteurs de vulnérabilité changent en fonction du type d'aléa, et contrairement à l'exposition, leur poids décroît quand l'intensité augmente.¦Au niveau local, la méthode a été testée pour mettre en évidence l'influence du changement climatique et du déclin des écosystèmes sur l'aléa. Dans le nord du Pakistan, la déforestation induit une augmentation de la susceptibilité des glissements de terrain. Les recherches menées au Pérou (à base d'imagerie satellitaire et de collecte de données au sol) révèlent un retrait glaciaire rapide et donnent une évaluation du volume de glace restante ainsi que des scénarios sur l'évolution possible.¦Ces résultats ont été présentés à des publics différents, notamment en face de 160 gouvernements. Les résultats et les données générées sont accessibles en ligne (http://preview.grid.unep.ch). La méthode est flexible et facilement transposable à des échelles et problématiques différentes, offrant de bonnes perspectives pour l'adaptation à d'autres domaines de recherche.¦La caractérisation du risque au niveau global et l'identification du rôle des écosystèmes dans le risque de catastrophe est en plein développement. Ces recherches ont révélés de nombreux défis, certains ont été résolus, d'autres sont restés des limitations. Cependant, il apparaît clairement que le niveau de développement configure line grande partie des risques de catastrophes. La dynamique du risque est gouvernée principalement par le changement global.¦Disasters are often perceived as fast and random events. If the triggers may be sudden, disasters are the result of an accumulation of actions, consequences from inappropriate decisions and from global change. To modify this perception of risk, advocacy tools are needed. Quantitative methods have been developed to identify the distribution and the underlying factors of risk.¦Disaster risk is resulting from the intersection of hazards, exposure and vulnerability. The frequency and intensity of hazards can be influenced by climate change or by the decline of ecosystems. Population growth increases the exposure, while changes in the level of development affect the vulnerability. Given that each of its components may change, the risk is dynamic and should be reviewed periodically by governments, insurance companies or development agencies. At the global level, these analyses are often performed using databases on reported losses. Our results show that these are likely to be biased in particular by improvements in access to information. International losses databases are not exhaustive and do not give information on exposure, the intensity or vulnerability. A new approach, independent of reported losses, is necessary.¦The researches presented here have been mandated by the United Nations and agencies working in the development and the environment (UNDP, UNISDR, GTZ, UNEP and IUCN). These organizations needed a quantitative assessment of the underlying factors of risk, to raise awareness amongst policymakers and to prioritize disaster risk reduction projects.¦The method is based on geographic information systems, remote sensing, databases and statistical analysis. It required a large amount of data (1.7 Tb of data on both the physical environment and socio-economic parameters) and several thousand hours of processing were necessary. A comprehensive risk model was developed to reveal the distribution of hazards, exposure and risk, and to identify underlying risk factors. These were performed for several hazards (e.g. floods, tropical cyclones, earthquakes and landslides). Two different multiple risk indexes were generated to compare countries. The results include an evaluation of the role of the intensity of the hazard, exposure, poverty, governance in the pattern and trends of risk. It appears that the vulnerability factors change depending on the type of hazard, and contrary to the exposure, their weight decreases as the intensity increases.¦Locally, the method was tested to highlight the influence of climate change and the ecosystems decline on the hazard. In northern Pakistan, deforestation exacerbates the susceptibility of landslides. Researches in Peru (based on satellite imagery and ground data collection) revealed a rapid glacier retreat and give an assessment of the remaining ice volume as well as scenarios of possible evolution.¦These results were presented to different audiences, including in front of 160 governments. The results and data generated are made available online through an open source SDI (http://preview.grid.unep.ch). The method is flexible and easily transferable to different scales and issues, with good prospects for adaptation to other research areas. The risk characterization at a global level and identifying the role of ecosystems in disaster risk is booming. These researches have revealed many challenges, some were resolved, while others remained limitations. However, it is clear that the level of development, and more over, unsustainable development, configures a large part of disaster risk and that the dynamics of risk is primarily governed by global change.
Resumo:
Dose kernel convolution (DK) methods have been proposed to speed up absorbed dose calculations in molecular radionuclide therapy. Our aim was to evaluate the impact of tissue density heterogeneities (TDH) on dosimetry when using a DK method and to propose a simple density-correction method. METHODS: This study has been conducted on 3 clinical cases: case 1, non-Hodgkin lymphoma treated with (131)I-tositumomab; case 2, a neuroendocrine tumor treatment simulated with (177)Lu-peptides; and case 3, hepatocellular carcinoma treated with (90)Y-microspheres. Absorbed dose calculations were performed using a direct Monte Carlo approach accounting for TDH (3D-RD), and a DK approach (VoxelDose, or VD). For each individual voxel, the VD absorbed dose, D(VD), calculated assuming uniform density, was corrected for density, giving D(VDd). The average 3D-RD absorbed dose values, D(3DRD), were compared with D(VD) and D(VDd), using the relative difference Δ(VD/3DRD). At the voxel level, density-binned Δ(VD/3DRD) and Δ(VDd/3DRD) were plotted against ρ and fitted with a linear regression. RESULTS: The D(VD) calculations showed a good agreement with D(3DRD). Δ(VD/3DRD) was less than 3.5%, except for the tumor of case 1 (5.9%) and the renal cortex of case 2 (5.6%). At the voxel level, the Δ(VD/3DRD) range was 0%-14% for cases 1 and 2, and -3% to 7% for case 3. All 3 cases showed a linear relationship between voxel bin-averaged Δ(VD/3DRD) and density, ρ: case 1 (Δ = -0.56ρ + 0.62, R(2) = 0.93), case 2 (Δ = -0.91ρ + 0.96, R(2) = 0.99), and case 3 (Δ = -0.69ρ + 0.72, R(2) = 0.91). The density correction improved the agreement of the DK method with the Monte Carlo approach (Δ(VDd/3DRD) < 1.1%), but with a lesser extent for the tumor of case 1 (3.1%). At the voxel level, the Δ(VDd/3DRD) range decreased for the 3 clinical cases (case 1, -1% to 4%; case 2, -0.5% to 1.5%, and -1.5% to 2%). No more linear regression existed for cases 2 and 3, contrary to case 1 (Δ = 0.41ρ - 0.38, R(2) = 0.88) although the slope in case 1 was less pronounced. CONCLUSION: This study shows a small influence of TDH in the abdominal region for 3 representative clinical cases. A simple density-correction method was proposed and improved the comparison in the absorbed dose calculations when using our voxel S value implementation.
Resumo:
Methods used to analyze one type of nonstationary stochastic processes?the periodically correlated process?are considered. Two methods of one-step-forward prediction of periodically correlated time series are examined. One-step-forward predictions made in accordance with an autoregression model and a model of an artificial neural network with one latent neuron layer and with an adaptation mechanism of network parameters in a moving time window were compared in terms of efficiency. The comparison showed that, in the case of prediction for one time step for time series of mean monthly water discharge, the simpler autoregression model is more efficient.
Resumo:
Advancements in high-throughput technologies to measure increasingly complex biological phenomena at the genomic level are rapidly changing the face of biological research from the single-gene single-protein experimental approach to studying the behavior of a gene in the context of the entire genome (and proteome). This shift in research methodologies has resulted in a new field of network biology that deals with modeling cellular behavior in terms of network structures such as signaling pathways and gene regulatory networks. In these networks, different biological entities such as genes, proteins, and metabolites interact with each other, giving rise to a dynamical system. Even though there exists a mature field of dynamical systems theory to model such network structures, some technical challenges are unique to biology such as the inability to measure precise kinetic information on gene-gene or gene-protein interactions and the need to model increasingly large networks comprising thousands of nodes. These challenges have renewed interest in developing new computational techniques for modeling complex biological systems. This chapter presents a modeling framework based on Boolean algebra and finite-state machines that are reminiscent of the approach used for digital circuit synthesis and simulation in the field of very-large-scale integration (VLSI). The proposed formalism enables a common mathematical framework to develop computational techniques for modeling different aspects of the regulatory networks such as steady-state behavior, stochasticity, and gene perturbation experiments.
Resumo:
BACKGROUND: Health professionals and policymakers aspire to make healthcare decisions based on the entire relevant research evidence. This, however, can rarely be achieved because a considerable amount of research findings are not published, especially in case of 'negative' results - a phenomenon widely recognized as publication bias. Different methods of detecting, quantifying and adjusting for publication bias in meta-analyses have been described in the literature, such as graphical approaches and formal statistical tests to detect publication bias, and statistical approaches to modify effect sizes to adjust a pooled estimate when the presence of publication bias is suspected. An up-to-date systematic review of the existing methods is lacking. METHODS/DESIGN: The objectives of this systematic review are as follows:âeuro¢ To systematically review methodological articles which focus on non-publication of studies and to describe methods of detecting and/or quantifying and/or adjusting for publication bias in meta-analyses.âeuro¢ To appraise strengths and weaknesses of methods, the resources they require, and the conditions under which the method could be used, based on findings of included studies.We will systematically search Web of Science, Medline, and the Cochrane Library for methodological articles that describe at least one method of detecting and/or quantifying and/or adjusting for publication bias in meta-analyses. A dedicated data extraction form is developed and pilot-tested. Working in teams of two, we will independently extract relevant information from each eligible article. As this will be a qualitative systematic review, data reporting will involve a descriptive summary. DISCUSSION: Results are expected to be publicly available in mid 2013. This systematic review together with the results of other systematic reviews of the OPEN project (To Overcome Failure to Publish Negative Findings) will serve as a basis for the development of future policies and guidelines regarding the assessment and handling of publication bias in meta-analyses.
Resumo:
New methods and devices for pursuing performance enhancement through altitude training were developed in Scandinavia and the USA in the early 1990s. At present, several forms of hypoxic training and/or altitude exposure exist: traditional 'live high-train high' (LHTH), contemporary 'live high-train low' (LHTL), intermittent hypoxic exposure during rest (IHE) and intermittent hypoxic exposure during continuous session (IHT). Although substantial differences exist between these methods of hypoxic training and/or exposure, all have the same goal: to induce an improvement in athletic performance at sea level. They are also used for preparation for competition at altitude and/or for the acclimatization of mountaineers. The underlying mechanisms behind the effects of hypoxic training are widely debated. Although the popular view is that altitude training may lead to an increase in haematological capacity, this may not be the main, or the only, factor involved in the improvement of performance. Other central (such as ventilatory, haemodynamic or neural adaptation) or peripheral (such as muscle buffering capacity or economy) factors play an important role. LHTL was shown to be an efficient method. The optimal altitude for living high has been defined as being 2200-2500 m to provide an optimal erythropoietic effect and up to 3100 m for non-haematological parameters. The optimal duration at altitude appears to be 4 weeks for inducing accelerated erythropoiesis whereas <3 weeks (i.e. 18 days) are long enough for beneficial changes in economy, muscle buffering capacity, the hypoxic ventilatory response or Na(+)/K(+)-ATPase activity. One critical point is the daily dose of altitude. A natural altitude of 2500 m for 20-22 h/day (in fact, travelling down to the valley only for training) appears sufficient to increase erythropoiesis and improve sea-level performance. 'Longer is better' as regards haematological changes since additional benefits have been shown as hypoxic exposure increases beyond 16 h/day. The minimum daily dose for stimulating erythropoiesis seems to be 12 h/day. For non-haematological changes, the implementation of a much shorter duration of exposure seems possible. Athletes could take advantage of IHT, which seems more beneficial than IHE in performance enhancement. The intensity of hypoxic exercise might play a role on adaptations at the molecular level in skeletal muscle tissue. There is clear evidence that intense exercise at high altitude stimulates to a greater extent muscle adaptations for both aerobic and anaerobic exercises and limits the decrease in power. So although IHT induces no increase in VO(2max) due to the low 'altitude dose', improvement in athletic performance is likely to happen with high-intensity exercise (i.e. above the ventilatory threshold) due to an increase in mitochondrial efficiency and pH/lactate regulation. We propose a new combination of hypoxic method (which we suggest naming Living High-Training Low and High, interspersed; LHTLHi) combining LHTL (five nights at 3000 m and two nights at sea level) with training at sea level except for a few (2.3 per week) IHT sessions of supra-threshold training. This review also provides a rationale on how to combine the different hypoxic methods and suggests advances in both their implementation and their periodization during the yearly training programme of athletes competing in endurance, glycolytic or intermittent sports.
Resumo:
Posaconazole (POS) is a new antifungal agent for prevention and therapy of mycoses in immunocompromised patients. Variable POS pharmacokinetics after oral dosing may influence efficacy: a trough threshold of 0.5 ?g/ml has been recently proposed. Measurement of POS plasma concentrations by complex chromatographic techniques may thus contribute to optimize prevention and management of life-threatening infections. No microbiological analytical method is available. The objective of this study was to develop and validate a new simplified ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method and a sensitive bioassay for quantification of POS over the clinical plasma concentration range. The UPLC-MS/MS equipment consisted of a triple quadrupole mass spectrometer, an electrospray ionization (ESI) source, and a C(18) analytical column. The Candida albicans POS-hypersusceptible mutant (MIC of 0.002 ?g/ml) ?cdr1 ?cdr2 ?flu ?mdr1 ?can constructed by targeted deletion of multidrug efflux transporters and calcineurin genes was used for the bioassay. POS was extracted from plasma by protein precipitation with acetonitrile-methanol (75%/25%, vol/vol). Reproducible standard curves were obtained over the range 0.014 to 12 (UPLC-MS/MS) and 0.028 to 12 ?g/ml (bioassay). Intra- and interrun accuracy levels were 106% ± 2% and 103% ± 4% for UPLC-MS/MS and 102% ± 8% and 104% ± 1% for bioassay, respectively. The intra- and interrun coefficients of variation were 7% ± 4% and 7% ± 3% for UPLC-MS/MS and 5% ± 3% and 4% ± 2% for bioassay, respectively. An excellent correlation between POS plasma concentrations measured by UPLC-MS/MS and bioassay was found (concordance, 0.96). In 26 hemato-oncological patients receiving oral POS, 27/69 (39%) trough plasma concentrations were lower than 0.5 ?g/ml. The UPLC-MS/MS method and sensitive bioassay offer alternative tools for accurate and precise quantification of the plasma concentrations in patients receiving oral posaconazole.
Resumo:
This paper presents the evaluation results of the methods submitted to Challenge US: Biometric Measurements from Fetal Ultrasound Images, a segmentation challenge held at the IEEE International Symposium on Biomedical Imaging 2012. The challenge was set to compare and evaluate current fetal ultrasound image segmentation methods. It consisted of automatically segmenting fetal anatomical structures to measure standard obstetric biometric parameters, from 2D fetal ultrasound images taken on fetuses at different gestational ages (21 weeks, 28 weeks, and 33 weeks) and with varying image quality to reflect data encountered in real clinical environments. Four independent sub-challenges were proposed, according to the objects of interest measured in clinical practice: abdomen, head, femur, and whole fetus. Five teams participated in the head sub-challenge and two teams in the femur sub-challenge, including one team who tackled both. Nobody attempted the abdomen and whole fetus sub-challenges. The challenge goals were two-fold and the participants were asked to submit the segmentation results as well as the measurements derived from the segmented objects. Extensive quantitative (region-based, distance-based, and Bland-Altman measurements) and qualitative evaluation was performed to compare the results from a representative selection of current methods submitted to the challenge. Several experts (three for the head sub-challenge and two for the femur sub-challenge), with different degrees of expertise, manually delineated the objects of interest to define the ground truth used within the evaluation framework. For the head sub-challenge, several groups produced results that could be potentially used in clinical settings, with comparable performance to manual delineations. The femur sub-challenge had inferior performance to the head sub-challenge due to the fact that it is a harder segmentation problem and that the techniques presented relied more on the femur's appearance.
Resumo:
Five selective serotonin reuptake inhibitors (SSRIs) have been introduced recently: citalopram, fluoxetine, fluvoxamine, paroxetine and sertraline. Although no therapeutic window has been defined for SSRIs, in contrast to tricyclic antidepressants, analytical methods for therapeutic drug monitoring of SSRIs are useful in several instances. SSRIs differ widely in their chemical structure and in their metabolism. The fact that some of them have N-demethylated metabolites, which are also SSRIs, requires that methods be available which allow therapeutic drug monitoring of the parent compounds and of these active metabolites. most procedures are based on prepurification of the SSRIs by liquid-liquid extraction before they are submitted to separation by chromatographic procedures (high-performance liquid chromatography, gas chromatography, thin layer chromatography) and detection by various detectors (UV, fluorescence, electrochemical detector, nitrogen-phosphorus detector, mass spectrometry). This literature review shows that most methods allow quantitative determination of SSRIs in plasma, in the lower ng/ml range, and that they are, therefore, suitable for therapeutic drug monitoring purposes of this category of drugs.
Resumo:
We propose a finite element approximation of a system of partial differential equations describing the coupling between the propagation of electrical potential and large deformations of the cardiac tissue. The underlying mathematical model is based on the active strain assumption, in which it is assumed that a multiplicative decomposition of the deformation tensor into a passive and active part holds, the latter carrying the information of the electrical potential propagation and anisotropy of the cardiac tissue into the equations of either incompressible or compressible nonlinear elasticity, governing the mechanical response of the biological material. In addition, by changing from an Eulerian to a Lagrangian configuration, the bidomain or monodomain equations modeling the evolution of the electrical propagation exhibit a nonlinear diffusion term. Piecewise quadratic finite elements are employed to approximate the displacements field, whereas for pressure, electrical potentials and ionic variables are approximated by piecewise linear elements. Various numerical tests performed with a parallel finite element code illustrate that the proposed model can capture some important features of the electromechanical coupling, and show that our numerical scheme is efficient and accurate.
Resumo:
OBJECTIVE: Routinely collected health data, collected for administrative and clinical purposes, without specific a priori research questions, are increasingly used for observational, comparative effectiveness, health services research, and clinical trials. The rapid evolution and availability of routinely collected data for research has brought to light specific issues not addressed by existing reporting guidelines. The aim of the present project was to determine the priorities of stakeholders in order to guide the development of the REporting of studies Conducted using Observational Routinely-collected health Data (RECORD) statement. METHODS: Two modified electronic Delphi surveys were sent to stakeholders. The first determined themes deemed important to include in the RECORD statement, and was analyzed using qualitative methods. The second determined quantitative prioritization of the themes based on categorization of manuscript headings. The surveys were followed by a meeting of RECORD working committee, and re-engagement with stakeholders via an online commentary period. RESULTS: The qualitative survey (76 responses of 123 surveys sent) generated 10 overarching themes and 13 themes derived from existing STROBE categories. Highest-rated overall items for inclusion were: Disease/exposure identification algorithms; Characteristics of the population included in databases; and Characteristics of the data. In the quantitative survey (71 responses of 135 sent), the importance assigned to each of the compiled themes varied depending on the manuscript section to which they were assigned. Following the working committee meeting, online ranking by stakeholders provided feedback and resulted in revision of the final checklist. CONCLUSIONS: The RECORD statement incorporated the suggestions provided by a large, diverse group of stakeholders to create a reporting checklist specific to observational research using routinely collected health data. Our findings point to unique aspects of studies conducted with routinely collected health data and the perceived need for better reporting of methodological issues.
Resumo:
Rare diseases are typically chronic medical conditions of genetic etiology characterized by low prevalence and high complexity. Patients living with rare diseases face numerous physical, psychosocial and economic challenges that place them in the realm of health disparities. Congenital hypogonadotropic hypogonadism (CHH) is a rare endocrine disorder characterized by absent puberty and infertility. Little is known about the psychosocial impact of CHH on patients or their adherence to available treatments. This project aimed to examine the relationship between illness perceptions, depressive symptoms and adherence to treatment in men with CHH using the nursing-sensitive Health Promotion Model (HPM). A community based participatory research (CBPR) framework was employed as a model for empowering patients and overcoming health inequities. The study design used a sequential, explanatory mixed-methods approach. To reach dispersed CHH men, we used web-based recruitment and data collection (online survey). Subsequently, three patient focus groups were conducted to provide explanatory insights into the online survey (i.e. barriers to adherence, challenges of CHH, and coping/support) The online survey (n=101) revealed that CHH men struggle with adherence and often have long gaps in care (40% >1 year). They experience negative psychosocial consequences because of CHH and exhibit significantly increased rates of depression (p<0.001). Focus group participants (n=26) identified healthcare system, interpersonal, and personal factors as barriers to adherence. Further, CHH impacts quality of life and impedes psychosexual development in these men. The CHH men are active internet users who rely on the web forcrowdsourcing solutions and peer-to-peer support. Moreover, they are receptive to web-based interventions to address unmet health needs. This thesis contributes to nursing knowledge in several ways. First, it demonstrates the utility of the HPM as a valuable theoretical construct for understanding medication adherence and for assessing rare disease patients. Second, these data identify a range of unmet health needs that are targets for patient-centered interventions. Third, leveraging technology (high-tech) effectively extended the reach of nursing care while the CBPR approach and focus groups (high-touch) served as concurrent nursing interventions facilitating patient empowerment in overcoming health disparities. Last, these findings hold promise for developing e-health interventions to bridge identified shortfalls in care and activating patients for enhanced self- care and wellness -- Les maladies rares sont généralement de maladies chroniques d'étiologie génétique caractérisées par une faible prévalence et une haute complexité de traitement. Les patients atteints de maladies rares sont confrontés à de nombreux défis physiques, psychosociaux et économiques qui les placent dans une posture de disparité et d'inégalités en santé. L'hypogonadisme hypogonadotrope congénital (CHH) est un trouble endocrinien rare caractérisé par l'absence de puberté et l'infertilité. On sait peu de choses sur l'impact psychosocial du CHH sur les patients ou leur adhésion aux traitements disponibles. Ce projet vise à examiner la relation entre la perception de la maladie, les symptômes dépressifs et l'observance du traitement chez les hommes souffrant de CHH. Cette étude est modélisée à l'aide du modèle de la Promotion de la santé de Pender (HPM). Le cadre de l'approche communautaire de recherche participative (CBPR) a aussi été utilisé. La conception de l'étude a reposé sur une approche mixte séquentielle. Pour atteindre les hommes souffrant de CHH, un recrutement et une collecte de données ont été organisées électroniquement. Par la suite, trois groupes de discussion ont été menées avec des patients experts impliqués au sein d'organisations reliés aux maladies rares. Ils ont été invités à discuter certains éléments additionnels dont, les obstacles à l'adhésion au traitement, les défis généraux de vivre avec un CHH, et l'adaptation à la maladie en tenant compte du soutien disponible. Le sondage en ligne (n = 101) a révélé que les hommes souffrant de CHH ont souvent de longues périodes en rupture de soins (40% > 1 an). Ils vivent des conséquences psychosociales négatives en raison du CHH et présentent une augmentation significative des taux de dépression (p <0,001). Les participants aux groupes de discussion (n = 26) identifient dans l'ordre, les systèmes de soins de santé, les relations interpersonnelles, et des facteurs personnels comme des obstacles à l'adhésion. En outre, selon les participants, le CHH impacte négativement sur leur qualité de vie générale et entrave leur développement psychosexuel. Les hommes souffrant de CHH se considèrent être des utilisateurs actifs d'internet et comptent sur le web pour trouver des solutions pour trouver des ressources et y recherchent le soutien de leurs pairs (peer-to-peer support). En outre, ils se disent réceptifs à des interventions qui sont basées sur le web pour répondre aux besoins de santé non satisfaits. Cette thèse contribue à la connaissance des soins infirmiers de plusieurs façons. Tout d'abord, elle démontre l'utilité de la HPM comme une construction théorique utile pour comprendre l'adhésion aux traitements et pour l'évaluation des éléments de promotion de santé qui concernent les patients atteints de maladies rares. Deuxièmement, ces données identifient une gamme de besoins de santé non satisfaits qui sont des cibles pour des interventions infirmières centrées sur le patient. Troisièmement, méthodologiquement parlant, cette étude démontre que les méthodes mixtes sont appropriées aux études en soins infirmiers car elles allient les nouvelles technologies qui peuvent effectivement étendre la portée des soins infirmiers (« high-tech »), et l'approche CBPR par des groupes de discussion (« high-touch ») qui ont facilité la compréhension des difficultés que doivent surmonter les hommes souffrant de CHH pour diminuer les disparités en santé et augmenter leur responsabilisation dans la gestion de la maladie rare. Enfin, ces résultats sont prometteurs pour développer des interventions e-santé susceptibles de combler les lacunes dans les soins et l'autonomisation de patients pour une meilleure emprise sur les auto-soins et le bien-être.