178 resultados para Ischemic Attack, Transient


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mucosal immunity to the enteric pathogen Shigella flexneri is mediated by secretory IgA (S-IgA) antibodies directed against the O-antigen (O-Ag) side chain of lipopolysaccharide. While secretory antibodies against the O-Ag are known to prevent bacterial invasion of the intestinal epithelium, the mechanisms by which this occurs are not fully understood. In this study, we report that the binding of a murine monoclonal IgA (IgAC5) to the O-Ag of S. flexneri serotype 5a suppresses activity of the type 3 secretion (T3S) system, which is necessary for S. flexneri to gain entry into intestinal epithelial cells. IgAC5's effects on the T3S were rapid (5 to 15 min) and were coincident with a partial reduction in the bacterial membrane potential and a decrease in intracellular ATP levels. Activity of the T3S system returned to normal levels 45 to 90 min following antibody treatment, demonstrating that IgAC5's effects were transient. Nonetheless, these data suggest a model in which the association of IgA with the O-Ag of S. flexneri partially de-energizes the T3S system and temporarily renders the bacterium incapable of invading intestinal epithelial cells. IMPORTANCE: Secretory IgA (S-IgA) serves as the first line of defense against enteric infections. However, despite its well-recognized role in mucosal immunity, relatively little is known at the molecular level about how this class of antibody functions to prevent pathogenic bacteria from penetrating the epithelial barrier. It is generally assumed that S-IgA functions primarily by "immune exclusion," a phenomenon in which the antibody binds to microbial surface antigens and thereby promotes bacterial agglutination, entrapment in mucus, and physical clearance from the gastrointestinal tract via peristalsis. The results of the present study suggest that in addition to serving as a physical barrier, S-IgA may have a direct impact on the ability of microbial pathogens to secrete virulence factors required for invasion of intestinal epithelial cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

WE USED A MURINE MODEL OF TRANSIENT FOCAL CEREBRAL ISCHEMIA TO STUDY: 1) in vivo DTI long-term temporal evolution of the apparent diffusion coefficient (ADC) and diffusion fractional anisotropy (FA) at days 4, 10, 15 and 21 after stroke 2) ex vivo distribution of a plasticity-related protein (GAP-43) and its relationship with the ex vivo DTI characteristics of the striato-thalamic pathway (21 days). All animals recovered motor function. In vivo ADC within the infarct was significantly increased after stroke. In the stroke group, GAP-43 expression and FA values were significantly higher in the ipsilateral (IL) striatum and contralateral (CL) hippocampus compared to the shams. DTI tractography showed fiber trajectories connecting the CL striatum to the stroke region, where increased GAP43 and FA were observed and fiber tracts from the CL striatum terminating in the IL hippocampus.Our data demonstrate that DTI changes parallel histological remodeling and recovery of function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The DEFUSE (n_74) and EPITHET (n_101) studies have in common that a baseline MRI was obtained prior to treatment (tPA in DEFUSE; tPA or placebo in EPITHET) in the 3-6 hour time-window. There were however important methodological differences between the studies. A standardized reanalysis of pooled data was undertaken to determine the effect of these differences on baseline characteristics and study outcomes. Methods: To standardize the studies 1) the DWI and PWI source images were reprocessed and segmented using automated image processing software (RAPID); 2) patients were categorized according to their baseline MRI profile as either Target Mismatch (PWITmax_6/DWI ratio_ 1.8 and an absolute mismatch _15mL), Malignant (DWI or PWITmax_10 lesion _ 100 mL), or No Mismatch. 3) favorable clinical response was defined as NIHSS score of 0-1 or a _8 points improvement on the NIHSSS at day 90. Results: Prior to standardization there was no difference in the proportion of Target Mismatch patients between EPITHET and DEFUSE (54% vs 49%, p_0.6), but the EPITHET study had more patients with the Malignant profile than DEFUSE (35% vs 9%, p_0.01) and fewer patients that had No Mismatch (11% vs 42%, p_0.01). These differences in baseline MRI profiles between EPITHET and DEFUSE were largely eliminated by standardized processing of PWI and DWI images with RAPID software (Target Mismatch 49% vs 48%; Malignant 15% vs 8%; No Mismatch 36% vs 25%; p_NS for all comparisons) Reperfusion was strongly associated with a favorable clinical response in mismatch patients (figure). This relationship was not affected by the standardization procedures (pooled odds ratio of 8.8 based on original data and 6.6 based on standardized data). Conclusion: Standardization of image analyses procedures in acute stroke is important as non-standardized techniques introduce significant variability in DWI and PWI imaging characteristics. Despite methodological differences, the DEFUSE and EPITHET studies show a consistent and robust association between reperfusion and favorable clinical response in Target Mismatch patients regardless of standardization. These data support an RCT of iv tPA in the 3-6 hour time-window for Target Mismatch patients identified using RAPID.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Version abregée L'ischémie cérébrale est la troisième cause de mort dans les pays développés, et la maladie responsable des plus sérieux handicaps neurologiques. La compréhension des bases moléculaires et anatomiques de la récupération fonctionnelle après l'ischémie cérébrale est donc extrêmement importante et représente un domaine d'intérêt crucial pour la recherche fondamentale et clinique. Durant les deux dernières décennies, les chercheurs ont tenté de combattre les effets nocifs de l'ischémie cérébrale à l'aide de substances exogènes qui, bien que testées avec succès dans le domaine expérimental, ont montré un effet contradictoire dans l'application clinique. Une approche différente mais complémentaire est de stimuler des mécanismes intrinsèques de neuroprotection en utilisant le «modèle de préconditionnement» : une brève insulte protège contre des épisodes d'ischémie plus sévères à travers la stimulation de voies de signalisation endogènes qui augmentent la résistance à l'ischémie. Cette approche peut offrir des éléments importants pour clarifier les mécanismes endogènes de neuroprotection et fournir de nouvelles stratégies pour rendre les neurones et la glie plus résistants à l'attaque ischémique cérébrale. Dans un premier temps, nous avons donc étudié les mécanismes de neuroprotection intrinsèques stimulés par la thrombine, un neuroprotecteur «préconditionnant» dont on a montré, à l'aide de modèles expérimentaux in vitro et in vivo, qu'il réduit la mort neuronale. En appliquant une technique de microchirurgie pour induire une ischémie cérébrale transitoire chez la souris, nous avons montré que la thrombine peut stimuler les voies de signalisation intracellulaire médiées par MAPK et JNK par une approche moléculaire et l'analyse in vivo d'un inhibiteur spécifique de JNK (L JNK) .Nous avons également étudié l'impact de la thrombine sur la récupération fonctionnelle après une attaque et avons pu démontrer que ces mécanismes moléculaires peuvent améliorer la récupération motrice. La deuxième partie de cette étude des mécanismes de récupération après ischémie cérébrale est basée sur l'investigation des bases anatomiques de la plasticité des connections cérébrales, soit dans le modèle animal d'ischémie transitoire, soit chez l'homme. Selon des résultats précédemment publiés par divers groupes ,nous savons que des mécanismes de plasticité aboutissant à des degrés divers de récupération fonctionnelle sont mis enjeu après une lésion ischémique. Le résultat de cette réorganisation est une nouvelle architecture fonctionnelle et structurelle, qui varie individuellement selon l'anatomie de la lésion, l'âge du sujet et la chronicité de la lésion. Le succès de toute intervention thérapeutique dépendra donc de son interaction avec la nouvelle architecture anatomique. Pour cette raison, nous avons appliqué deux techniques de diffusion en résonance magnétique qui permettent de détecter les changements de microstructure cérébrale et de connexions anatomiques suite à une attaque : IRM par tenseur de diffusion (DT-IR1V) et IRM par spectre de diffusion (DSIRM). Grâce à la DT-IRM hautement sophistiquée, nous avons pu effectuer une étude de follow-up à long terme chez des souris ayant subi une ischémie cérébrale transitoire, qui a mis en évidence que les changements microstructurels dans l'infarctus ainsi que la modification des voies anatomiques sont corrélés à la récupération fonctionnelle. De plus, nous avons observé une réorganisation axonale dans des aires où l'on détecte une augmentation d'expression d'une protéine de plasticité exprimée dans le cône de croissance des axones (GAP-43). En appliquant la même technique, nous avons également effectué deux études, rétrospective et prospective, qui ont montré comment des paramètres obtenus avec DT-IRM peuvent monitorer la rapidité de récupération et mettre en évidence un changement structurel dans les voies impliquées dans les manifestations cliniques. Dans la dernière partie de ce travail, nous avons décrit la manière dont la DS-IRM peut être appliquée dans le domaine expérimental et clinique pour étudier la plasticité cérébrale après ischémie. Abstract Ischemic stroke is the third leading cause of death in developed countries and the disease responsible for the most serious long-term neurological disability. Understanding molecular and anatomical basis of stroke recovery is, therefore, extremely important and represents a major field of interest for basic and clinical research. Over the past 2 decades, much attention has focused on counteracting noxious effect of the ischemic insult with exogenous substances (oxygen radical scavengers, AMPA and NMDA receptor antagonists, MMP inhibitors etc) which were successfully tested in the experimental field -but which turned out to have controversial effects in clinical trials. A different but complementary approach to address ischemia pathophysiology and treatment options is to stimulate and investigate intrinsic mechanisms of neuroprotection using the "preconditioning effect": applying a brief insult protects against subsequent prolonged and detrimental ischemic episodes, by up-regulating powerful endogenous pathways that increase resistance to injury. We believe that this approach might offer an important insight into the molecular mechanisms responsible for endogenous neuroprotection. In addition, results from preconditioning model experiment may provide new strategies for making brain cells "naturally" more resistant to ischemic injury and accelerate their rate of functional recovery. In the first part of this work, we investigated down-stream mechanisms of neuroprotection induced by thrombin, a well known neuroprotectant which has been demonstrated to reduce stroke-induced cell death in vitro and in vivo experimental models. Using microsurgery to induce transient brain ischemia in mice, we showed that thrombin can stimulate both MAPK and JNK intracellular pathways through a molecular biology approach and an in vivo analysis of a specific kinase inhibitor (L JNK1). We also studied thrombin's impact on functional recovery demonstrating that these molecular mechanisms could enhance post-stroke motor outcome. The second part of this study is based on investigating the anatomical basis underlying connectivity remodeling, leading to functional improvement after stroke. To do this, we used both a mouse model of experimental ischemia and human subjects with stroke. It is known from previous data published in literature, that the brain adapts to damage in a way that attempts to preserve motor function. The result of this reorganization is a new functional and structural architecture, which will vary from patient to patient depending on the anatomy of the damage, the biological age of the patient and the chronicity of the lesion. The success of any given therapeutic intervention will depend on how well it interacts with this new architecture. For this reason, we applied diffusion magnetic resonance techniques able to detect micro-structural and connectivity changes following an ischemic lesion: diffusion tensor MRI (DT-MRI) and diffusion spectrum MRI (DS-MRI). Using DT-MRI, we performed along-term follow up study of stroke mice which showed how diffusion changes in the stroke region and fiber tract remodeling is correlating with stroke recovery. In addition, axonal reorganization is shown in areas of increased plasticity related protein expression (GAP 43, growth axonal cone related protein). Applying the same technique, we then performed a retrospective and a prospective study in humans demonstrating how specific DTI parameters could help to monitor the speed of recovery and show longitudinal changes in damaged tracts involved in clinical symptoms. Finally, in the last part of this study we showed how DS-MRI could be applied both to experimental and human stroke and which perspectives it can open to further investigate post stroke plasticity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Even though patients who develop ischemic stroke despite taking antiplatelet drugs represent a considerable proportion of stroke hospital admissions, there is a paucity of data from investigational studies regarding the most suitable therapeutic intervention. There have been no clinical trials to test whether increasing the dose or switching antiplatelet agents reduces the risk for subsequent events. Certain issues have to be considered in patients managed for a first or recurrent stroke while receiving antiplatelet agents. Therapeutic failure may be due to either poor adherence to treatment, associated co-morbid conditions and diminished antiplatelet effects (resistance to treatment). A diagnostic work up is warranted to identify the etiology and underlying mechanism of stroke, thereby guiding further management. Risk factors (including hypertension, dyslipidemia and diabetes) should be treated according to current guidelines. Aspirin or aspirin plus clopidogrel may be used in the acute and early phase of ischemic stroke, whereas in the long-term, antiplatelet treatment should be continued with aspirin, aspirin/extended release dipyridamole or clopidogrel monotherapy taking into account tolerance, safety, adherence and cost issues. Secondary measures to educate patients about stroke, the importance of adherence to medication, behavioral modification relating to tobacco use, physical activity, alcohol consumption and diet to control excess weight should also be implemented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Macular edema resulting from central retinal vein occlusion is effectively treated with anti-vascular endothelial growth factor injections. However, some patients need monthly retreatment and still show frequent recurrences. The purpose of this study was to evaluate the visual and anatomic outcomes of refractory macular edema resulting from ischemic central retinal vein occlusion in patients switched from ranibizumab to aflibercept intravitreal injections. Patients and Methods: We describe a retrospective series of patients followed in the Medical Retina Unit of the Jules Gonin Eye Hospital for macular edema due to ischemic central retinal vein occlusion, refractory to monthly retreatment with ranibizumab, and changed to aflibercept. Refractory macular edema was defined as persistence of any fluid at each visit one month after last injection during at least 6 months. All patients had to have undergone pan-retinal laser scan. Results: Six patients were identified, one of whom had a very short-term follow-up (excluded from statistics). Mean age was 57 ± 12 years. The mean changes in visual acuity and central macular thickness from baseline to switch were + 20.6 ± 20.3 ETDRS letters and - 316.4 ± 276.6 µm, respectively. The additional changes from before to after the switch were + 9.2 ± 9.5 ETDRS letters and - 248.0 ± 248.7 µm, respectively. The injection intervals could often be lengthened after the switch. Conclusions: Intravitreal aflibercept seems to be a promising alternative treatment for macular edema refractory to ranibizumab in ischemic central retinal vein occlusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To assess safety up to 1 year of follow-up associated with prasugrel and clopidogrel use in a prospective cohort of patients with acute coronary syndromes (ACS). METHODS: Between 2009 and 2012, 2286 patients invasively managed for ACS were enrolled in the multicentre Swiss ACS Bleeding Cohort, among whom 2148 patients received either prasugrel or clopidogrel according to current guidelines. Patients with ST-elevation myocardial infarction (STEMI) preferentially received prasugrel, while those with non-STEMI, a history of stroke or transient ischaemic attack, age ≥75 years, or weight <60 kg received clopidogrel or reduced dose of prasugrel to comply with the prasugrel label. RESULTS: After adjustment using propensity scores, the primary end point of clinically relevant bleeding events (defined as the composite of Bleeding Academic Research Consortium, BARC, type 3, 4 or 5 bleeding) at 1 year, occurred at a similar rate in both patient groups (prasugrel/clopidogrel: 3.8%/5.5%). Stratified analyses in subgroups including patients with STEMI yielded a similar safety profile. After adjusting for baseline variables, no relevant differences in major adverse cardiovascular and cerebrovascular events were observed at 1 year (prasugrel/clopidogrel: cardiac death 2.6%/4.2%, myocardial infarction 2.7%/3.8%, revascularisation 5.9%/6.7%, stroke 1.0%/1.6%). Of note, this study was not designed to compare efficacy between prasugrel and clopidogrel. CONCLUSIONS: In this large prospective ACS cohort, patients treated with prasugrel according to current guidelines (ie, in patients without cerebrovascular disease, old age or underweight) had a similar safety profile compared with patients treated with clopidogrel. CLINICAL TRIAL REGISTRATION NUMBER: SPUM-ACS: NCT01000701; COMFORTABLE AMI: NCT00962416.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the case of a 37-year-old woman who developed critical upper limb ischemia caused by a cervical rib. Because the malformation was initially undiagnosed, a vascular bypass was performed, and failure occurred. Following a 6-month therapy with sildenafil, revascularization of the arm was successful and amputation was avoided. A 6-year follow-up shows a rich collateral network at the compression site and normal values of digital plethysmography. Because hand surgeons often see patients with digital ulcerations and other manifestations of peripheral vascular pathology, therapy of ischemia with sildenafil could be an effective treatment option in patients not responding to classic drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Perfusion-CT (PCT) processing involves deconvolution, a mathematical operation that computes the perfusion parameters from the PCT time density curves and an arterial curve. Delay-sensitive deconvolution does not correct for arrival delay of contrast, whereas delay-insensitive deconvolution does. The goal of this study was to compare delay-sensitive and delay-insensitive deconvolution PCT in terms of delineation of the ischemic core and penumbra. METHODS: We retrospectively identified 100 patients with acute ischemic stroke who underwent admission PCT and CT angiography (CTA), a follow-up vascular study to determine recanalization status, and a follow-up noncontrast head CT (NCT) or MRI to calculate final infarct volume. PCT datasets were processed twice, once using delay-sensitive deconvolution and once using delay-insensitive deconvolution. Regions of interest (ROIs) were drawn, and cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) in these ROIs were recorded and compared. Volume and geographic distribution of ischemic core and penumbra using both deconvolution methods were also recorded and compared. RESULTS: MTT and CBF values are affected by the deconvolution method used (p < 0.05), while CBV values remain unchanged. Optimal thresholds to delineate ischemic core and penumbra are different for delay-sensitive (145 % MTT, CBV 2 ml × 100 g(-1) × min(-1)) and delay-insensitive deconvolution (135 % MTT, CBV 2 ml × 100 g(-1) × min(-1) for delay-insensitive deconvolution). When applying these different thresholds, however, the predicted ischemic core (p = 0.366) and penumbra (p = 0.405) were similar with both methods. CONCLUSION: Both delay-sensitive and delay-insensitive deconvolution methods are appropriate for PCT processing in acute ischemic stroke patients. The predicted ischemic core and penumbra are similar with both methods when using different sets of thresholds, specific for each deconvolution method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined the effect of anterior ischemic optic neuropathy (AION) on the activity of intrinsically photosensitive retinal ganglion cells (ipRGCs) using the pupil as proxy. Eighteen patients with AION (10 unilateral, 8 bilateral) and 29 age-matched control subjects underwent chromatic pupillometry. Red and blue light stimuli increasing in 0.5 log steps were presented to each eye independently under conditions of dark and light adaptation. The recorded pupil contraction was plotted against stimulus intensity to generate scotopic and photopic response curves for assessment of synaptically-mediated ipRGC activity. Bright blue light stimuli presented monocularly and binocularly were used for melanopsin activation. The post-stimulus pupil size (PSPS) at the 6th second following stimulus offset was the marker of intrinsic ipRGC activity. Finally, questionnaires were administered to assess the influence of ipRGCs on sleep. The pupil response and PSPS to all monocularly-presented light stimuli were impaired in AION eyes, indicating ipRGC dysfunction. To binocular light stimulation, the PSPS of AION patients was similar to that of controls. There was no difference in the sleep habits of the two groups. Thus after ischemic injury to one or both optic nerves, the summated intrinsic ipRGC activity is preserved when both eyes receive adequate light exposure.