263 resultados para Immune algorithm
Resumo:
We herein present a preliminary practical algorithm for evaluating complementary and alternative medicine (CAM) for children which relies on basic bioethical principles and considers the influence of CAM on global child healthcare. CAM is currently involved in almost all sectors of pediatric care and frequently represents a challenge to the pediatrician. The aim of this article is to provide a decision-making tool to assist the physician, especially as it remains difficult to keep up-to-date with the latest developments in the field. The reasonable application of our algorithm together with common sense should enable the pediatrician to decide whether pediatric (P)-CAM represents potential harm to the patient, and allow ethically sound counseling. In conclusion, we propose a pragmatic algorithm designed to evaluate P-CAM, briefly explain the underlying rationale and give a concrete clinical example.
Resumo:
Pathogenicity of Chlamydia and Chlamydia-related bacteria could be partially mediated by an enhanced activation of the innate immune response. The study of this host pathogen interaction has proved challenging due to the restricted in vitro growth of these strict intracellular bacteria and the lack of genetic tools to manipulate their genomes. Despite these difficulties, the interactions of Chlamydiales with the innate immune cells and their effectors have been studied thoroughly. This review aims to point out the role of pattern recognition receptors and signal molecules (cytokines, reactive oxygen species) of the innate immune response in the pathogenesis of chlamydial infection. Besides inducing clearance of the bacteria, some of these effectors may be used by the Chlamydia to establish chronic infections or to spread. Thus, the induced innate immune response seems to be variable depending on the species and/or the serovar, making the pattern more complex. It remains crucial to determine the common players of the innate immune response in order to help define new treatment strategies and to develop effective vaccines. The excellent growth in phagocytic cells of some Chlamydia-related organisms such as Waddlia chondrophila supports their use as model organisms to study conserved features important for interactions between the innate immunity and Chlamydia.
Resumo:
The recruitment of dendritic cells to sites of infections and their migration to lymph nodes is fundamental for antigen processing and presentation to T cells. In the present study, we showed that antibody blockade of junctional adhesion molecule C (JAM-C) on endothelial cells removed JAM-C away from junctions and increased vascular permeability after L. major infection. This has multiple consequences on the output of the immune response. In resistant C57BL/6 and susceptible BALB/c mice, we found higher numbers of innate immune cells migrating from blood to the site of infection. The subsequent migration of dendritic cells (DCs) from the skin to the draining lymph node was also improved, thereby boosting the induction of the adaptive immune response. In C57BL/6 mice, JAM-C blockade after L. major injection led to an enhanced IFN-γ dominated T helper 1 (Th1) response with reduced skin lesions and parasite burden. Conversely, anti JAM-C treatment increased the IL-4-driven T helper 2 (Th2) response in BALB/c mice with disease exacerbation. Overall, our results show that JAM-C blockade can finely-tune the innate cell migration and accelerate the consequent immune response to L. major without changing the type of the T helper cell response.
Resumo:
The use of well characterized recombinant or purified protein antigens (Ag) for vaccination is of interest for safety reasons and in the case where inactivated pathogens are not available (cancer, allergy). However it requires the addition of adjuvants such as Ag carrier or immune stimulators to potentiate their immunogenicity. In this study, we demonstrated that gas-filled microbubbles (MB) can serve as an efficient Ag delivery system to promote phagocytosis of the model Ag ovalbumin (OVA) without the need of ultrasound application. Once internalized by DC, OVA was processed and presented to both CD4 and CD8 T cells in vitro; such observations were coupled with the capacity of MB to activate DC. In vivo administration of MB-associated OVA in naïve wild-type Balb/c mice resulted in the induction of OVA-specific antibody and T cell responses. Detailed characterization of the generated immune response demonstrated the production of both IgG1 and IgG2a serum antibodies, as well as the secretion of IFN-γ and IL-10 by splenocytes. Interestingly, similar results were obtained with human DC in regards of Ag delivery and cell activation. Therefore, the data presented here settle the proof of principle for the further evaluation of MB-based immunomodulation studies.
Resumo:
Many inflammatory and infectious diseases are characterized by the activation of signaling pathways steaming from the endoplasmic reticulum (ER). These pathways, primarily associated with loss of ER homeostasis, are emerging as key regulators of inflammation and infection. Recent advances shed light on the mechanisms linking ER-stress and immune responses.
Resumo:
Fibroblast-like cells of secondary lymphoid organs (SLO) are important for tissue architecture. In addition, they regulate lymphocyte compartmentalization through the secretion of chemokines, and participate in the orchestration of appropriate cell-cell interactions required for adaptive immunity. Here, we provide data demonstrating the functional importance of SLO fibroblasts during Notch-mediated lineage specification and immune response. Genetic ablation of the Notch ligand Delta-like (DL)1 identified splenic fibroblasts rather than hematopoietic or endothelial cells as niche cells, allowing Notch 2-driven differentiation of marginal zone B cells and of Esam(+) dendritic cells. Moreover, conditional inactivation of DL4 in lymph node fibroblasts resulted in impaired follicular helper T cell differentiation and, consequently, in reduced numbers of germinal center B cells and absence of high-affinity antibodies. Our data demonstrate previously unknown roles for DL ligand-expressing fibroblasts in SLO niches as drivers of multiple Notch-mediated immune differentiation processes.
The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response.
Resumo:
The innate immune system recognizes nucleic acids during infection and tissue damage. Whereas viral RNA is detected by endosomal toll-like receptors (TLR3, TLR7, TLR8) and cytoplasmic RIG-I and MDA5, endosomal TLR9 and cytoplasmic DAI bind DNA, resulting in the activation of nuclear factor-kappaB and interferon regulatory factor transcription factors. However, viruses also trigger pro-inflammatory responses, which remain poorly defined. Here we show that internalized adenoviral DNA induces maturation of pro-interleukin-1beta in macrophages, which is dependent on NALP3 and ASC, components of the innate cytosolic molecular complex termed the inflammasome. Correspondingly, NALP3- and ASC-deficient mice display reduced innate inflammatory responses to adenovirus particles. Inflammasome activation also occurs as a result of transfected cytosolic bacterial, viral and mammalian (host) DNA, but in this case sensing is dependent on ASC but not NALP3. The DNA-sensing pro-inflammatory pathway functions independently of TLRs and interferon regulatory factors. Thus, in addition to viral and bacterial components or danger signals in general, inflammasomes sense potentially dangerous cytoplasmic DNA, strengthening their central role in innate immunity.
Resumo:
The artificial dsRNA polyriboinosinic acid-polyribocytidylic acid, poly(I:C), is a potent adjuvant candidate for vaccination, as it strongly drives cell-mediated immunity. However, because of its effects on non-immune bystander cells, poly(I:C) administration may bear danger for the development of autoimmune diseases. Thus poly(I:C) should be applied in the lowest dose possible. We investigated microspheres carrying surface-assembled poly(I:C) as a two-in-one adjuvant formulation to stimulate maturation of monocyte-derived dendritic cells (MoDCs). Negatively charged polystyrene microspheres were equipped with a poly(ethylene glycol) corona through electrostatically driven surface assembly of a library of polycationic poly(l-lysine)-graft-poly(ethylene glycol) copolymers, PLL-g-PEG. Stable surface assembly of poly(I:C) was achieved by incubation of polymer-coated microspheres in an aqueous poly(I:C) solution. Surface-assembled poly(I:C) exhibited a strongly enhanced efficacy to stimulate maturation of MoDCs by up to two orders of magnitude, as compared to free poly(I:C). Multiple phagocytosis events were the key factor to enhance the efficacy. The cytokine secretion pattern of MoDCs after exposure to surface-assembled poly(I:C) differed from that of free poly(I:C), while their ability to stimulate T cell proliferation was similar. Overall, phagocytic signaling plays an important role in defining the resulting immune response to such two-in-one adjuvant formulations.
Resumo:
Infections with Leishmania parasites of the Leishmania Viannia subgenus give rise to both localized cutaneous (CL), and metastatic leishmaniasis. Metastasizing disease forms including disseminated (DCL) and mutocutaneous (MCL) leishmaniasis result from parasitic dissemination and lesion formation at sites distal to infection and have increased inflammatory responses. The presence of Leishmania RNA virus (LRV) in L. guyanensis parasites contributes to the exacerbation of disease and impacts inflammatory responses via activation of TLR3 by the viral dsRNA. In this study we investigated other innate immune response adaptor protein modulators and demonstrated that both MyD88 and TLR9 played a crucial role in the development of Th1-dependent healing responses against L. guyanensis parasites regardless of their LRV status. The absence of MyD88- or TLR9-dependent signaling pathways resulted in increased Th2 associated cytokines (IL-4 and IL-13), which was correlated with low transcript levels of IL-12p40. The reliance of IL-12 was further confirmed in IL12AB-/- mice, which were completely susceptible to infection. Protection to L. guyanensis infection driven by MyD88- and TLR9-dependent immune responses arises independently to those induced due to high LRV burden within the parasites.
Resumo:
Adenovirus serotype 5 (Ad5) vectors and specific neutralizing antibodies (NAbs) generate immune complexes (ICs) which are potent inducers of dendritic cell (DC) maturation. Here we show that ICs generated with rare Ad vector serotypes, such as Ad26 and Ad35, which are lead candidates in HIV vaccine development, are poor inducers of DC maturation and that their potency in inducing DC maturation strongly correlated with the number of Toll-like receptor 9 (TLR9)-agonist motifs present in the Ad vector's genome. In addition, we showed that antihexon but not antifiber antibodies are responsible for the induction of Ad IC-mediated DC maturation.
Resumo:
BACKGROUND & AIM: Immune-modulating nutritional formula containing arginine, omega-3 fatty acids and nucleotides has been demonstrated to decrease complications and length of stay in surgical patients. This study aims at assessing the impact of immune-modulating formula on hospital costs in gastrointestinal cancer surgical patients in Switzerland. METHOD: Based on a previously published meta-analysis, the relative risks of overall and infectious complications with immune-modulating versus standard nutrition formula were computed. Swiss hospital costs of patients undergoing gastrointestinal cancer surgery were retrieved. A method was developed to compute the patients' severity level, not taking into account the complications from the surgery. Incremental costs of complications were computed for both treatment groups, and sensitivity analyses were carried out. RESULTS: Relative risk of complications with pre-, peri- and post-operative use of immune-modulating formula was 0.69 (95%CI 0.58-0.83), 0.62 (95%CI 0.53-0.73) and 0.73 (95%CI 0.35-0.96) respectively. The estimated average contribution of complications to the cost of stay was CHF 14,949 (euro10,901) per patient (95%CI 10,712-19,186), independently of case's severity. Based on this cost, immune-modulating nutritional support decreased costs of hospital stay by CHF 1638 to CHF 2488 per patient (euro1195-euro1814). Net hospital savings were present for baseline complications rates as low as 5%. CONCLUSION: Immune-modulating nutritional solution is a cost-saving intervention in gastrointestinal cancer patients. The additional cost of immune-modulating formula are more than offset by savings associated with decreased treatment of complications.
Resumo:
Mouse mammary tumor virus (MMTV) has developed a strategy of exploitation of the immune response. It infects dendritic cells and B cells and requires this infection to establish an efficient chronic infection. This allows transmission of infection to the mammary gland, production in milk and infection of the next generation via lactation. The elaborate strategy developed by MMTV utilizes several key elements of the normal immune response. Starting with the infection and activation of dendritic cells and B cells leading to the expression of a viral superantigen followed by professional superantigen-mediated priming of naive polyclonal T cells by dendritic cells and induction of superantigen-mediated T cell B cell collaboration results in long-lasting germinal center formation and production of long-lived B cells that can later carry the virus to the mammary gland epithelium. Later in life it can induce transformation of mammary gland epithelium by integrating close to proto-oncogenes leading to their overexpression. Genes encoding proteins of the Wnt-pathway are preferential targets. This review will put these effects in the context of a normal immune response and summarize important facts on MMTV biology.