153 resultados para Hartree Fock scheme correlation errors
Resumo:
Objectives: To correlate the chronic stimulated electrode position on postoperative MRI with the clinical response obtained in PD patients. Material and Method: We retrospectively reviewed 14 consecutive parkinsonian patients who were selected for STN-DBS surgery. Coordinates were determined on an IR T2 MRI coronal section per pendicular to AC-PC plane 3 mm posterior to midcommissural point (MCP) and 12 mm lateral to the midline the inferior aspect of subthalamic region. A CRW stereotactic frame was used for the surgical procedure. A 3D IR T2 MRI was performed postoperatively to determine the location of the stimulated contact in each patient. The clinical results were assessed independently by the neurological team. Results: All but 2 patients had monopolar stimulation. The mean coordinates of the stimulated contacts were: AP ^ ÿ4:23G1:4, Lat ^ 1:12G0:15, Vert ^ ÿ4:1 G2:7 to the MCP. With a mean follow-up of 8 months, all stimulated patients had a significant clinical improvement (preop/postop «ON» UPDRS: 25:8G7:0= 23:3 G8:6; preop/postop «OFF» UPDRS: 50:2G11:4=26:0 G7:8), 60% of them without any antiparkinsonian drug. Conclusion: According to the stereotactic atlas of Schaltenbrand and Warren and the 3D shape of the STN, our results show that our targetting is accurate and almost all the stimulated contacts are comprised in the STN volume. This indicates that MRI is a safe, precise and reproducible procedure for targetting the STN. The location of the stimulated contact within the STN volume is a good predictor of the clinical results.
Resumo:
In humans, action errors and perceptual novelty elicit activity in a shared frontostriatal brain network, allowing them to adapt their ongoing behavior to such unexpected action outcomes. Healthy and pathologic aging reduces the integrity of white matter pathways that connect individual hubs of such networks and can impair the associated cognitive functions. Here, we investigated whether structural disconnection within this network because of small-vessel disease impairs the neural processes that subserve motor slowing after errors and novelty (post-error slowing, PES; post-novel slowing, PNS). Participants with intact frontostriatal circuitry showed increased right-lateralized beta-band (12-24 Hz) synchrony between frontocentral and frontolateral electrode sites in the electroencephalogram after errors and novelty, indexing increased neural communication. Importantly, this synchrony correlated with PES and PNS across participants. Furthermore, such synchrony was reduced in participants with frontostriatal white matter damage, in line with reduced PES and PNS. The results demonstrate that behavioral change after errors and novelty result from coordinated neural activity across a frontostriatal brain network and that such cognitive control is impaired by reduced white matter integrity.