419 resultados para Gene Expression Regulation, Neoplastic
Resumo:
The molecular mechanisms regulating the initial uptake of inorganic sulfate in plants are still largely unknown. The current model for the regulation of sulfate uptake and assimilation attributes positive and negative regulatory roles to O-acetyl-serine (O-acetyl-Ser) and glutathione, respectively. This model seems to suffer from exceptions and it has not yet been clearly validated whether intracellular O-acetyl-Ser and glutathione levels have impacts on regulation. The transcript level of the two high-affinity sulfate transporters SULTR1.1 and SULTR1.2 responsible for sulfate uptake from the soil solution was compared to the intracellular contents of O-acetyl-Ser, glutathione, and sulfate in roots of plants submitted to a wide diversity of experimental conditions. SULTR1.1 and SULTR1.2 were differentially expressed and neither of the genes was regulated in accordance with the current model. The SULTR1.1 transcript level was mainly altered in response to the sulfur-related treatments. Split-root experiments show that the expression of SULTR1.1 is locally regulated in response to sulfate starvation. In contrast, accumulation of SULTR1.2 transcripts appeared to be mainly related to metabolic demand and is controlled by photoperiod. On the basis of the new molecular insights provided in this study, we suggest that the expression of the two transporters depends on different regulatory networks. We hypothesize that interplay between SULTR1.1 and SULTR1.2 transporters could be an important mechanism to regulate sulfate content in the roots
C/EBPbeta couples dopamine signalling to substance P precursor gene expression in striatal neurones.
Resumo:
Dopamine-induced changes in striatal gene expression are thought to play an important role in drug addiction and compulsive behaviour. In this study we report that dopamine induces the expression of the transcription factor CCAAT/Enhancer Binding Protein beta (C/EBP)-beta in primary cultures of striatal neurones. We identified the preprotachykinin-A (PPT-A) gene coding for substance P and neurokinin-A as a potential target gene of C/EBPbeta. We demonstrated that C/EBPbeta physically interacts with an element of the PPT-A promoter, thereby facilitating substance P precursor gene transcription. The regulation of PPT-A gene by C/EBPbeta could subserve many important physiological processes involving substance P, such as nociception, neurogenic inflammation and addiction. Given that substance P is known to increase dopamine signalling in the striatum and, in turn, dopamine increases substance P expression in medium spiny neurones, our results implicate C/EBPbeta in a positive feedback loop, changes of which might contribute to the development of drug addiction.
Resumo:
Natural killer (NK) cellsexpress receptors specific for class I major histocompatibility complex (MHC) molecules. In the mouse, the class I specific receptors identified to date belong to the polymorphic Ly49 receptor family. Engagement of Ly49 receptors with their respective MHC ligands results in negative regulation of NK cell effector functions, consistent with a critical role of these receptors in "missing self" recognition. The Ly49 receptors analyzed so far are clonally distributed such that multiple distinct Ly49 receptors can be expressed by individual NK cells (for review see refs. 1-3). The finding that most NK cells that express the Ly49A receptor do so from a single Ly49A allele (whereby expression can occur from the maternal or the paternal chromosome) may thus reflect a putative receptor distribution process that restricts the number of Ly49 receptors expressed in a single NK cell (3-5).
Resumo:
Association studies have revealed expression quantitative trait loci (eQTLs) for a large number of genes. However, the causative variants that regulate gene expression levels are generally unknown. We hypothesized that copy-number variation of sequence repeats contribute to the expression variation of some genes. Our laboratory has previously identified that the rare expansion of a repeat c.-174CGGGGCGGGGCG in the promoter region of the CSTB gene causes a silencing of the gene, resulting in progressive myoclonus epilepsy. Here, we genotyped the repeat length and quantified CSTB expression by quantitative real-time polymerase chain reaction in 173 lymphoblastoid cell lines (LCLs) and fibroblast samples from the GenCord collection. The majority of alleles contain either two or three copies of this repeat. Independent analysis revealed that the c.-174CGGGGCGGGGCG repeat length is strongly associated with CSTB expression (P = 3.14 × 10(-11)) in LCLs only. Examination of both genotyped and imputed single-nucleotide polymorphisms (SNPs) within 2 Mb of CSTB revealed that the dodecamer repeat represents the strongest cis-eQTL for CSTB in LCLs. We conclude that the common two or three copy variation is likely the causative cis-eQTL for CSTB expression variation. More broadly, we propose that polymorphic tandem repeats may represent the causative variation of a fraction of cis-eQTLs in the genome.
Resumo:
Background- Cardiac hypertrophy involves growth responses to a variety of stimuli triggered by increased workload. It is an independent risk factor for heart failure and sudden death. Mammalian target of rapamycin (mTOR) plays a key role in cellular growth responses by integrating growth factor and energy status signals. It is found in 2 structurally and functionally distinct multiprotein complexes called mTOR complex (mTORC) 1 and mTORC2. The role of each of these branches of mTOR signaling in the adult heart is currently unknown. Methods and Results- We generated mice with deficient myocardial mTORC1 activity by targeted ablation of raptor, which encodes an essential component of mTORC1, during adulthood. At 3 weeks after the deletion, atrial and brain natriuretic peptides and β-myosin heavy chain were strongly induced, multiple genes involved in the regulation of energy metabolism were altered, but cardiac function was normal. Function deteriorated rapidly afterward, resulting in dilated cardiomyopathy and high mortality within 6 weeks. Aortic banding-induced pathological overload resulted in severe dilated cardiomyopathy already at 1 week without a prior phase of adaptive hypertrophy. The mechanism involved a lack of adaptive cardiomyocyte growth via blunted protein synthesis capacity, as supported by reduced phosphorylation of ribosomal S6 kinase 1 and 4E-binding protein 1. In addition, reduced mitochondrial content, a shift in metabolic substrate use, and increased apoptosis and autophagy were observed. Conclusions- Our results demonstrate an essential function for mTORC1 in the heart under physiological and pathological conditions and are relevant for the understanding of disease states in which the insulin/insulin-like growth factor signaling axis is affected such as diabetes mellitus and heart failure or after cancer therapy.
Resumo:
Non-infarcted myocardium after coronary occlusion undergoes progressive morphological and functional changes. The purpose of this study was to determine whether non-infarcted myocardium exhibits (1) alteration of the substrate pattern of myocardial metabolism and (2) concomitant changes in the expression of regulatory proteins of glucose and fatty acid metabolism. Myocardial infarction was induced in rats by ligation of the left coronary artery. One day and eight weeks after coronary occlusion, glucose and palmitate oxidation were measured. Expression of selected proteins of metabolism were determined one day to 12 weeks after infarction. One day after coronary occlusion no difference of glucose and palmitate oxidation was detectable, whereas after eight weeks, glucose oxidation was increased (+84%, P<0.05) and palmitate oxidation did not change significantly (-19%, P=0.07) in infarct-containing hearts, compared with hearts from sham-operated rats. One day after coronary occlusion, myocardial mRNA expression of the glucose transporter GLUT-1 was increased (+86%, P<0.05) and the expression of GLUT-4 was decreased (-28%, P<0.05) in surviving myocardium of infarct-containing hearts. Protein level of GLUT-1 was increased (+81%, P<0.05) and that of GLUT-4 slightly, but not significantly, decreased (-16%, P=NS). mRNA expressions of heart fatty acid binding protein (H-FABP), and of medium chain acyl-CoA dehydrogenase (MCAD), were decreased by 36% (P<0.05) and 35% (P=0. 07), respectively. Eight weeks after acute infarction, the left ventricle was hypertrophied and, at this time-point, there was no difference in the expression of GLUT-1 and GLUT-4 between infarcted and sham-operated hearts. However, myocardial mRNA and protein content of MCAD were decreased by 30% (P<0.01) and 27% (P<0.05), respectively. In summary, in surviving myocardium, glucose oxidation was increased eight weeks after coronary occlusion. Concomitantly, mRNA and protein expression of MCAD were decreased, compatible with a role of altered expression of regulatory proteins of metabolism in post-infarction modification of myocardial metabolism.
Resumo:
We previously reported that hepatitis B virus (HBV) e antigen (HBeAg) inhibits production of interleukin 6 by suppressing NF-κB activation. NF-κB is known to be activated through receptor-interacting serine/threonine protein kinase 2 (RIPK2), and we examined the mechanisms of interleukin 6 regulation by HBeAg. HBeAg inhibits RIPK2 expression and interacts with RIPK2, which may represent 2 mechanisms through which HBeAg blocks nucleotide-binding oligomerization domain-containing protein 1 ligand-induced NF-κB activation in HepG2 cells. Our findings identified novel molecular mechanisms whereby HBeAg modulates intracellular signaling pathways by targeting RIPK2, supporting the concept that HBeAg could impair both innate and adaptive immune responses to promote chronic HBV infection.
Resumo:
A considerable proportion of mammalian gene expression undergoes circadian oscillations. Post-transcriptional mechanisms likely make important contributions to mRNA abundance rhythms. We have investigated how microRNAs (miRNAs) contribute to core clock and clock-controlled gene expression using mice in which miRNA biogenesis can be inactivated in the liver. While the hepatic core clock was surprisingly resilient to miRNA loss, whole transcriptome sequencing uncovered widespread effects on clock output gene expression. Cyclic transcription paired with miRNA-mediated regulation was thus identified as a frequent phenomenon that affected up to 30% of the rhythmic transcriptome and served to post-transcriptionally adjust the phases and amplitudes of rhythmic mRNA accumulation. However, only few mRNA rhythms were actually generated by miRNAs. Overall, our study suggests that miRNAs function to adapt clock-driven gene expression to tissue-specific requirements. Finally, we pinpoint several miRNAs predicted to act as modulators of rhythmic transcripts, and identify rhythmic pathways particularly prone to miRNA regulation.DOI: http://dx.doi.org/10.7554/eLife.02510.001.
Resumo:
Neuropeptide Y (NPY) is a key modulator of the autonomic nervous system playing pivotal roles in cardiovascular and neuronal functions. In this study, we assessed the cellular localization and gene expression of NPY in rat kidneys. We also examined the relationship between NPY gene expression and renin in two rat models of hypertension (two-kidney, one-clip renal hypertension (2K1C), and deoxycorticosterone-salt-induced hypertension (DOCA-salt)) characterized by a similar blood pressure elevation. In situ hybridization and immunohistochemistry, using anti-NPY or anti-C-flanking peptide of NPY (CPON) antibodies, showed that NPY transcript and protein were colocalized in the tubules of rat kidneys. During experimental hypertension, NPY mRNA was decreased in both kidneys of the 2K1C animals, but not in the kidney of DOCA-salt rats. In 2K1C rats, renal NPY content was also decreased. The difference in NPY gene expression between 2K1C rats (a high renin model of hypertension) and DOCA-salt rats (a low renin model of hypertension) suggests that circulating angiotensin II plays a role in local renal NPY gene expression and that the elevated blood pressure per se is not the primary factor responsible for the control of NPY gene expression in the kidney.
Resumo:
A procedure to culture Xenopus laevis hepatocytes that allows the cells in primary culture to be subjected to gene transfer experiments has been developed. The cultured cells continue to present tissue-specific markers such as expression of the albumin gene or estrogen-controlled vitellogenin gene expression, which are both restricted to liver. Two efficient and reproducible gene transfer procedures have been adapted to the Xenopus hepatocytes, namely lipofection and calcium phosphate-mediated precipitation. The transcription of transfected reporter genes controlled by estrogen-, glucocorticoid- or peroxisome proliferator-response elements was stimulated by endogenous or co-transfected receptor in a ligand-dependent manner. Furthermore, the expression of a reporter gene under the control of the entire promoter of the vitellogenin B1 gene mimicked the expression of the chromosomal vitellogenin gene with respect to basal and estrogen-induced activity. Thus, this culture-transfection system will prove very useful to study the regulation of genes expressed in the liver under the control of various hormones or xenobiotics.
Resumo:
The role of retinoic acids (RA) on liver fatty acid-binding protein (L-FABP) expression was investigated in the well differentiated FAO rat hepatoma cell line. 9-cis-Retinoic acid (9-cis-RA) specifically enhanced L-FABP mRNA levels in a time- and dose-dependent manner. The higher induction was found 6 h after addition of 10(-6) M 9-cis-RA in the medium. RA also enhanced further both L-FABP mRNA levels and cytosolic L-FABP protein content induced by oleic acid. The retinoid X receptor (RXR) and the peroxisome proliferator-activated receptor (PPAR), which are known to be activated, respectively, by 9-cis-RA and long chain fatty acid (LCFA), co-operated to bind specifically the peroxisome proliferator-responsive element (PPRE) found upstream of the L-FABP gene. Our result suggest that the PPAR-RXR complex is the molecular target by which 9-cis-RA and LCFA regulate the L-FABP gene.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that can be activated by fatty acids and peroxisome proliferators. The PPAR alpha subtype mediates the pleiotropic effects of these activators in liver and regulates several target genes involved in fatty acid catabolism. In primary hepatocytes cultured in vitro, the PPAR alpha gene is regulated at the transcriptional level by glucocorticoids. We investigated if this hormonal regulation also occurs in the whole animal in physiological situations leading to increased plasma corticosterone levels in rats. We show here that an immobilization stress is a potent and rapid stimulator of PPAR alpha expression in liver but not in hippocampus. The injection of the synthetic glucocorticoid dexamethasone into adult rats produces a similar increase in PPAR alpha expression in liver, whereas the administration of the antiglucocorticoid RU 486 inhibits the stress-dependent stimulation. We conclude that glucocorticoids are major mediators of the stress response. Consistent with this hormonal regulation, hepatic PPAR alpha mRNA and protein levels follow a diurnal rhythm, which parallels that of circulating corticosterone. To test the effects of variations in PPAR alpha expression on PPAR alpha target gene activity, high glucocorticoid-dependent PPAR alpha expression was mimicked in cultured primary hepatocytes. Under these conditions, hormonal stimulation of receptor expression synergizes with receptor activation by WY-14,643 to induce the expression of the PPAR alpha target gene acyl-CoA oxidase. Together, these results show that regulation of the PPAR alpha expression levels efficiently modulates PPAR activator signaling and thus may affect downstream metabolic pathways involved in lipid homeostasis.
Resumo:
BACKGROUND: The differentiation of CD8+ T lymphocytes following priming of naïve cells is central in the establishment of the adaptive immune response. Yet, the molecular events underlying this process are not fully understood. MicroRNAs have been recently shown to play a key role in the regulation of haematopoiesis in mouse, but their implication in peripheral lymphocyte differentiation in humans remains largely unknown. METHODS: In order to explore the potential implication of microRNAs in CD8+ T cell differentiation in humans, microRNA expression profiles were analysed using microarrays and quantitative PCR in several human CD8+ T cell subsets defining the major steps of the T cell differentiation pathway. RESULTS: We found expression of a limited set of microRNAs, including the miR-17~92 cluster. Moreover, we reveal the existence of differentiation-associated regulation of specific microRNAs. When compared to naive cells, miR-21 and miR-155 were indeed found upregulated upon differentiation to effector cells, while expression of the miR-17~92 cluster tended to concomitantly decrease. CONCLUSIONS: This study establishes for the first time in a large panel of individuals the existence of differentiation associated regulation of microRNA expression in human CD8+ T lymphocytes in vivo, which is likely to impact on specific cellular functions.
Resumo:
Mature T cells comprise two mutually exclusive lineages expressing heterodimeric alpha beta or gamma delta antigen receptors. During development, beta, gamma, and delta genes rearrange before alpha, and mature gamma delta cells arise in the thymus prior to alpha beta cells. The mechanism underlying commitment of immature T cells to the alpha beta or gamma delta lineage is controversial. Since the delta locus is located within the alpha locus, rearrangement of alpha genes leads to deletion of delta. We have examined the rearrangement status of the delta locus immediately prior to alpha rearrangement. We find that many thymic precursors of alpha beta cells undergo VDJ delta rearrangements. Furthermore, the same cells frequently coexpress sterile T early alpha (TEA) transcripts originating 3' of C delta and 5' of the most upstream J alpha, thus implying that individual alpha beta lineage cells undergo sequential VDJ delta and VJ alpha rearrangements. Finally, VDJ delta rearrangements in immature alpha beta cells appear to be random, supporting models in which alpha beta lineage commitment is determined independently of the rearrangement status at the TCR delta locus.
Resumo:
Background: Mammalian target of rapamycin (mTOR), a central regulator of cell growth, is found in two structurally and functionally distinct multiprotein complexes called mTOR complex (mTORC)1 and mTORC2. The specific roles of each of these branches of mTOR signaling have not been dissected in the adult heart. In the present study, we aimed to bring new insights into the function of cardiac mTORC1-mediated signaling in physiological as well as pathological situations.Methods: We generated mice homozygous for loxP-flanked raptor and positive for the tamoxifen-inducible Cre recombinase (MerCreMer) under control of the α- myosin heavy chain promoter. The raptor gene encodes an essential component of mTORC1. Gene ablation was induced at the age of 10-12 weeks, and two weeks later the raptor cardiac-knockout (raptor-cKO) mice started voluntary cagewheel exercise or were subjected to transverse aortic constriction (TAC) to induce pressure overload.Results: In sedentary raptor-cKO mice, ejection fractions gradually decreased, resulting in significantly reduced values at 38 days (P < 0.001). Raptor-cKO mice started to die during the fifth week after the last tamoxifen injection. At that time, the mortality rate was 36% in sedentary (n = 11) and 64% in exercising (n = 14) mice. TAC-induced pressure overload resulted in severe cardiac dysfunction already at earlier timepoints. Thus, at 7-9 days after surgery, ejection fraction and fractional shortening values were 22.3% vs 43.5% and 10.2% vs 21.5% in raptor-cKO vs wild-type mice, respectively. This was accompanied by significant reductions of ventricular wall and septal thickness as well as an increase in left ventricular internal diameter. Moreover, ventricular weight to tibial length ratios were increased in wild-type, but not in the raptor-cKO TAC mice. Together, this shows that raptor-cKO mice rapidly developed dilated cardiomyopathy without going through a phase of adaptive hypertrophy. Expression of ANP and β-MHC was induced in all raptor-cKO mice irrespective of the cardiac load conditions. Consistent with reduced mTORC1 activity, phosphorylation of ribosomal S6 kinase and 4E-BP1 was blunted, indicating reduced protein synthesis. Moreover, expression of multiple genes involved in the regulation of energy metabolism was altered, and followed by a shift from fatty acid to glucose oxidation.Conclusion: Our study suggests that mTORC1 coordinates protein and energy metabolic pathways in the heart. Moreover, we demonstrate that raptor is essential for the cardiac adaptation to increased workload and importantly, also for normal physiological cardiac function.