195 resultados para Epidermal lamellae
Resumo:
Summary : The skin is a complex organ that protects the body against entry of pathogens and supplies a relatively dry and impermeable barrier to water loss. This barrier function is mainly provided by the epidermis, which is the outermost layer of the skin. Serine proteases are involved in skin physiology and it is known that mutations or alterations in their expression can lead to skin diseases. In order to investigate the importance of the regulated expression of CAPI/Prss8, a membrane bound serine protease expressed in the epidermis, we developed transgenic mice ectopically expressing CAPI/Prss8 in the skin. These animals exhibited a phenotype characterized by scaly skin, epidermal hypertrophy, inflammation and scratching behavior. This phenotype could be completely abolished in mice lacking the proteinase activated receptor 2 (PAR2) revealing PAR2 as a potential in vivo downstream target of CAP 1 /Prss8. We could also provide evidence of a CAP1 /Prss8 function independent of its catalytic activity. Additionally, mice ectopically expressing PAR2 in the skin developed a skin phenotype very similar to CAPI/Prss8 transgenic animals, supporting the hypothesis of PAR2 activation by CAPI/Prss8. We could furthermore demonstrate an inhibitory effect of the serine protease inhibitor nexin-I on CAPI/Prss8, since nexin-1 transgenic expression negated the skin phenotype observed in CAPI/Prss8 transgenic mice. CAP1/Prss8 and PAR2 transgenic animals, and the understanding of the interaction between CAPl/Prss8 and PAR2, can be helpful in developing potential CAPI/Prss8 and PAR2 inhibitory molecules that may be used as drugs to treat ichthyoses-like skin diseases. Résumé : La peau est un organe complexe qui protège le corps contre l'entrée des pathogènes et forme une barrière imperméable qui empêche la déshydratation. Cette fonction de barrière est surtout fournie par l'épiderme, la couche la plus superficielle de la peau. Le bon fonctionnement de cet organe est permis, entre autres, par les protéases à sérine qui sont des enzymes dont l'altération peut causer des maladies de la peau. Pour étudier l'importance de la régulation de CAP1/Prss8, une protéase à sérine exprimée au niveau de l'épiderme, des souris génétiquement modifiées, dans lesquelles CAP1/Prss8 est exprimé d'une manière ectopique dans la peau, ont été générées. Les animaux transgéniques pour CAP1/Prss8 présentent une peau squameuse, un épiderme hypertrophique, des processus inflammatoires et se grattent. Ce phénotype a pu être complètement guéri lorsque le gène de PAR2, un récepteur qui règle l'activité des cellules de l'épiderme, est inactivé chez la souris. Ceci montre que PAR2 est une cible de CAP1/Prss8 dans le système étudié. Des études expérimentales suggèrent de plus que l'effet de CAP1/Prss8 dans ce modèle ne dépend pas de son activité enzymatique. En dernière analyse, il a été démontré que l'expression transgénique de nexin-1, un inhibiteur des protéases à sérine exprimé dans la peau, a la capacité d'améliorer la peau squameuse et l'épiderme hypertrophique causés par CAP1/Prss8 transgénique. Les animaux transgéniques pour CAP1/Prss8 et PAR2, et la compréhension du mécanisme d'interaction entre eux, pourraient aider à développer et à tester des molécules inhibitrices de CAP1 /Prss8 et PARI qui pourraient alors être utilisées comme médicaments pour traiter des maladies de la peau comme les ichthyoses.
Resumo:
PURPOSE HER2 mutations are identified in approximately 2%of non-small-cell lung cancers (NSCLC). There are few data available that describe the clinical course of patients with HER2-mutated NSCLC. PATIENTS AND METHODS We retrospectively identified 65 NSCLC, diagnosed with a HER2 in-frame insertion in exon 20. We collected clinicopathologic characteristics, patients' outcomes, and treatments. Results HER2 mutation was identified in 65 (1.7%) of 3,800 patients tested and was almost an exclusive driver, except for one single case with a concomitant KRAS mutation. Our population presented with a median age of 60 years (range, 31 to 86 years), a high proportion of women (45 women v 20 men; 69%), and a high proportion of never-smokers (n= 34; 52.3%). All tumors were adenocarcinomas and 50% were stage IV at diagnosis. For these latter cases, 22 anti-human epidermal growth factor receptor 2 (HER2) treatments were administered after conventional chemotherapy in 16 patients. Subsequently, four patients experienced progressive disease, seven experienced disease stabilizations, and 11 experienced partial responses (overall response rate, 50%; disease control rate [DCR], 82%). Specifically, we observed a DCR of 93% for trastuzumab-based therapies (n = 15) and a DCR of 100% for afatinib (n = 3) but no response to other HER2-targeted drugs (n = 3). Progression-free survival for patients with HER2 therapies was 5.1 months. Median survival was of 89.6 and 22.9 months for early-stage and stage IV patients, respectively. CONCLUSION This study, the largest to date dedicated to HER2-mutated NSCLC, reinforces the importance of screening for HER2 mutations in lung adenocarcinomas and suggests the potential efficacy of HER2-targeted drugs in this population.
Resumo:
Loss-of-function mutations in human profilaggrin gene have been identified as the cause of ichthyosis vulgaris (IV), and as a major predisposition factor for atopic dermatitis (AD). Similarly, flaky tail (a/a ma ft/ma ft/J) mice were described as a model for IV, and shown to be predisposed to eczema. The aim of this study was to correlate the flaky tail mouse phenotype with human IV and AD, in order to dissect early molecular events leading to atopic dermatitis in mice and men, suffering from filaggrin deficiency. Thus, 5-days old flaky tail pups were analyzed histologically, expression of cytokines was measured in skin and signaling pathways were investigated by protein analysis. Human biopsies of IV and AD patients were analyzed histologically and by real time PCR assays. Our data show acanthosis and hyperproliferation in flaky tail epidermis, associated with increased IL1β and thymic stromal lymphopoietin (TSLP) expression, and Th2-polarization. Consequently, NFκB and Stat pathways were activated, and IL6 mRNA levels were increased. Further, quantitative analysis of late epidermal differentiation markers revealed increased Small proline-rich protein 2A (Sprr2a) synthesis. Th2-polarization and Sprr2a increase may result from high TSLP expression, as shown after analysis of 5-days old K14-TSLP tg mouse skin biopsies. Our findings in the flaky tail mouse correlate with data obtained from patient biopsies of AD, but not IV. We propose that proinflammatory cytokines are responsible for acanthosis in flaky tail epidermis, and together with the Th2-derived cytokines lead to morphological changes. Accordingly, the a/a ma ft/ma ft/J mouse model can be used as an appropriate model to study early AD onset associated with profilaggrin deficiency.
Resumo:
Colorectal cancer (CRC) is a major cause of cancer mortality. Whereas some patients respond well to therapy, others do not, and thus more precise, individualized treatment strategies are needed. To that end, we analyzed gene expression profiles from 1,290 CRC tumors using consensus-based unsupervised clustering. The resultant clusters were then associated with therapeutic response data to the epidermal growth factor receptor-targeted drug cetuximab in 80 patients. The results of these studies define six clinically relevant CRC subtypes. Each subtype shares similarities to distinct cell types within the normal colon crypt and shows differing degrees of 'stemness' and Wnt signaling. Subtype-specific gene signatures are proposed to identify these subtypes. Three subtypes have markedly better disease-free survival (DFS) after surgical resection, suggesting these patients might be spared from the adverse effects of chemotherapy when they have localized disease. One of these three subtypes, identified by filamin A expression, does not respond to cetuximab but may respond to cMET receptor tyrosine kinase inhibitors in the metastatic setting. Two other subtypes, with poor and intermediate DFS, associate with improved response to the chemotherapy regimen FOLFIRI in adjuvant or metastatic settings. Development of clinically deployable assays for these subtypes and of subtype-specific therapies may contribute to more effective management of this challenging disease.
Insulin and insulin-like growth factor I receptors utilize different G protein signaling components.
Resumo:
We examined the role of heterotrimeric G protein signaling components in insulin and insulin-like growth factor I (IGF-I) action. In HIRcB cells and in 3T3L1 adipocytes, treatment with the Galpha(i) inhibitor (pertussis toxin) or microinjection of the Gbetagamma inhibitor (glutathione S-transferase-betaARK) inhibited IGF-I and lysophosphatidic acid-stimulated mitogenesis but had no effect on epidermal growth factor (EGF) or insulin action. In basal state, Galpha(i) and Gbeta were associated with the IGF-I receptor (IGF-IR), and after ligand stimulation the association of IGF-IR with Galpha(i) increased concomitantly with a decrease in Gbeta association. No association of Galpha(i) was found with either the insulin or EGF receptor. Microinjection of anti-beta-arrestin-1 antibody specifically inhibited IGF-I mitogenic action but had no effect on EGF or insulin action. beta-Arrestin-1 was associated with the receptors for IGF-I, insulin, and EGF in a ligand-dependent manner. We demonstrated that Galpha(i), betagamma subunits, and beta-arrestin-1 all play a critical role in IGF-I mitogenic signaling. In contrast, neither metabolic, such as GLUT4 translocation, nor mitogenic signaling by insulin is dependent on these protein components. These results suggest that insulin receptors and IGF-IRs can function as G protein-coupled receptors and engage different G protein partners for downstream signaling.
Resumo:
After an injury, keratinocytes acquire the plasticity necessary for the reepithelialization of the wound. Here, we identify a novel pathway by which a nuclear hormone receptor, until now better known for its metabolic functions, potentiates cell migration. We show that peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) enhances two phosphatidylinositol 3-kinase-dependent pathways, namely, the Akt and the Rho-GTPase pathways. This PPARbeta/delta activity amplifies the response of keratinocytes to a chemotactic signal, promotes integrin recycling and remodeling of the actin cytoskeleton, and thereby favors cell migration. Using three-dimensional wound reconstructions, we demonstrate that these defects have a strong impact on in vivo skin healing, since PPARbeta/delta-/- mice show an unexpected and rare epithelialization phenotype. Our findings demonstrate that nuclear hormone receptors not only regulate intercellular communication at the organism level but also participate in cell responses to a chemotactic signal. The implications of our findings may be far-reaching, considering that the mechanisms described here are important in many physiological and pathological situations.
Resumo:
BACKGROUND: Gefitinib is active in patients with pretreated non-small-cell lung cancer (NSCLC). We evaluated the activity and toxicity of gefitinib first-line treatment in advanced NSCLC followed by chemotherapy at disease progression. PATIENTS AND METHODS: In all, 63 patients with chemotherapy-naive stage IIIB/IV NSCLC received gefitinib 250 mg/day. At disease progression, gefitinib was replaced by cisplatin 80 mg/m(2) on day 1 and gemcitabine 1250 mg/m(2) on days 1, 8 for up to six 3-week cycles. Primary end point was the disease stabilization rate (DSR) after 12 weeks of gefitinib. RESULTS: After 12 weeks of gefitinib, the DSR was 24% and the response rate (RR) was 8%. Median time to progression (TtP) was 2.5 months and median overall survival (OS) 11.5 months. Never smokers (n = 9) had a DSR of 56% and a median OS of 20.2 months; patients with epidermal growth factor receptor (EGFR) mutation (n = 4) had a DSR of 75% and the median OS was not reached after the follow-up of 21.6 months. In all, 41 patients received chemotherapy with an overall RR of 34%, DSR of 71% and median TtP of 6.7 months. CONCLUSIONS: First-line gefitinib monotherapy led to a DSR of 24% at 12 weeks in an unselected patients population. Never smokers and patients with EGFR mutations tend to have a better outcome; hence, further trials in selected patients are warranted.
Resumo:
Ultraviolet A (UVA) radiation represents an important oxidative stress to human skin and certain forms of oxidative stress have been shown to modulate intercellular adhesion molecule-1 (ICAM-1) expression. ICAM-1 has been shown to play an important part in many immune reactions and the perturbations of this molecule by ultraviolet radiation could have implications in many inflammatory responses. An enhancement immunohistochemical method with avidin/biotin was used for analysing the early effects of UVA radiation on human cell cultures and human skin (340-400 nm). Both in vitro and in vivo data show that ICAM-1 staining in epidermal keratinocytes, which was expressed constitutively, decreased in a UVA dose-dependent manner. The decrease was most noted at 3-6 h following UVA radiation with some ICAM-1 staining returning by 48 h post-UVA. ICAM-1 positive staining in the dermis was specific for vascular structures and was increased 24 h after UVA radiation. Cultured dermal fibroblasts exhibited ICAM-1 staining which increased slightly within 6-48 h post-UVA radiation. As epidermal ICAM-1 expression is depleted following UVA radiation and dermal expression increases due to an increase in the vascular structures, ICAM-1 provides a valuable marker following UVA radiation in human skin that can be readily measured in situ.
Resumo:
Squamous cell carcinoma of the head and neck (SCCHN) is a common disease that develops in the upper aerodigestive epithelium. The most important risk factors are tobacco and alcohol consumption. There is also increasing evidence that human papillomavirus plays an important role in the cause of SCCHN. The complex anatomy, the vital functions of the upper aerodigestive tract and the close proximity to vital structures, explain that the goal of treatment is not only to improve survival outcomes, but also to preserve organ function. Radiotherapy and surgery are the standard modalities of treatment, reflecting the locoregional predominance of SCCHN. Chemotherapy plays an important role in the treatment of patients with locoregionally advanced disease, in conjunction with radiotherapy and surgery. Indeed, standard therapy for resectable locoregionally advanced (stage III or IV) SCCHN cancers consists either of surgery and adjuvant chemoradiotherapy or definitive concomitant chemoradiotherapy, depending upon disease site, stage and resectability of the tumour, or institutional experience. Concomitant chemoradiotherapy has been shown in several randomised trials to improve disease-free and overall survival in the postoperative setting for resected disease with poor prognostic factors. Furthermore, multiple randomised studies and meta-analyses have shown that definitive chemoradiotherapy, as well anti-epidermal growth factor receptor treatment in one randomised study, improved disease-free and overall survival when compared with radiotherapy alone. This overview reviews the most relevant published studies on the multidisciplinary management of SCCHN and discusses future strategies to reduce locoregional failures.
Resumo:
The transcription factor serum response factor (SRF) plays a crucial role in the development of several organs. However, its role in the skin has not been explored. Here, we show that keratinocytes in normal human and mouse skin expressed high levels of SRF but that SRF expression was strongly downregulated in the hyperproliferative epidermis of wounded and psoriatic skin. Keratinocyte-specific deletion within the mouse SRF locus during embryonic development caused edema and skin blistering, and all animals died in utero. Postnatal loss of mouse SRF in keratinocytes resulted in the development of psoriasis-like skin lesions. These lesions were characterized by inflammation, hyperproliferation, and abnormal differentiation of keratinocytes as well as by disruption of the actin cytoskeleton. Ultrastructural analysis revealed markedly reduced cell-cell and cell-matrix contacts and loss of cell compaction in all epidermal layers. siRNA-mediated knockdown of SRF in primary human keratinocytes revealed that the cytoskeletal abnormalities and adhesion defects were a direct consequence of the loss of SRF. In contrast, the hyperproliferation observed in vivo was an indirect effect that was most likely a consequence of the inflammation. These results reveal that loss of SRF disrupts epidermal homeostasis and strongly suggest its involvement in the pathogenesis of hyperproliferative skin diseases, including psoriasis.
Resumo:
Purpose: Taking advantage of two transgenic lines, glast.DsRed and crx.gfp, that express fluorescent proteins in glial and photoreceptor cells respectively, we investigate the role of glast-positive glial cells (GPCs) in the survival/differentiation/proliferation of age-matched photoreceptor cells. Methods: Primary retinal cells were isolated from newborn transgenic mouse retina (glast.dsRed::crx.gfp) at postnatal day (P0/P1) and propagated in defined medium containing epidermal growth factor (EGF) and fibroblast growth factor 2 (bFGF). By flow-sorting another population of pure GPCs was isolated. Both populations were expanded and analyzed for the presence of specific retinal cell markers. Notably, the primary cell culture collected from the transgenic line glast.dsRed::crx.gfp showed a conspicuous presence of immature photoreceptors growing on top of GPCs. In order to reveal the role of such cells in the survival/differentiation/proliferation of photoreceptors we set up in vitro cultures of retina-derived cells that allowed long-term time-lapse recordings charting every cell division, death and differentiation event. To assess the regenerative potential of GPCs we challenged them with compounds mimicking retinal degeneration (NMU, NMDA, Zaprinast). Mass spectrometry (MS), immunostainings and other molecular approaches were performed to reveal adhesion molecules involved in the relationship between glial cells and photoreceptors. Results: Both primary cell lines were highly homogenous, with an elongated morphology and the majority expressed Müller glia markers (MG) such as glast, blbp, glt-1, vimentin, glutamine synthetase (GS), GFAP, cd44, mash1 and markers of reactive Müller glia such as nestin, pax6. Conversely, none of them were found positive for retinal neuron markers like tuj1, otx2, recoverin. Primary cultures of GPCs show the incapability of glial cells to give rise to photoreceptors in both wild type or degenerative environment. Furthermore, primary cultures of pure GPCs challenged with different compounds did not highlight the production of new glial cell-derived photoreceptors. Adhesion molecules involved in the contact between photoreceptors and glial cells are still under investigation. Conclusions: Primary glia cells do not give rise to photoreceptor cells in wt and degenerative conditions at least in vitro. The roles of glial cells seem to be more linked to the maintenance/proliferation of photoreceptor cells.
Resumo:
Although most delayed drug hypersensitivity reactions are mild and show rapid improvement after drug discontinuation, there are severe systemic and/or cutaneous drug reactions which may be life-threatening. These entities are discussed here, namely DRESS syndrome (Drug Reaction with Eosinophilia and Systemic Symptoms), acute generalized exanthematous pustulosis (AGEP), Stevens-Johnson syndrome and toxic epidermal necrolysis (TEN). Early detection of warning signs and symptoms may help to take appropriate measures precociously.
Resumo:
The PPARs (peroxisome-proliferator-activated receptors) alpha, beta/delta and gamma belong to the nuclear hormone receptor superfamily. While all three receptors are undetectable in adult mouse interfollicular epidermis, PPARbeta expression and activity is strongly re-activated by inflammatory stimuli during epidermal injury. The pro-inflammatory cytokine TNFalpha (tumour necrosis factor alpha) stimulates transcription of the PPARbeta gene via an activator protein-1 site in its promoter and it also triggers the production of PPARbeta ligands in keratinocytes. This increase of PPARbeta activity in these cells up-regulates the expression of integrin-linked kinase and 3-phosphoinositide-dependent kinase-1, which phosphorylates protein kinase B-alpha (Akt1). The resulting increase in Akt1 activity suppresses apoptosis and ensures the presence of a sufficient number of viable keratinocytes at the wound margin for re-epithelialization. Together, these observations reveal that PPARbeta takes on multiple roles and contributes favourably to the process of wound closure.
Resumo:
Estrogen deprivation is associated with delayed healing, while Hormone Replacement Therapy (HRT) accelerates acute wound healing and protects against development of chronic wounds. Estrogen exerts its effects on healing via numerous cell types by signalling through the receptors ERα and ERβ, which bind to the Estrogen Responsive Element (ERE) and initiate gene transcription. The ERE-luciferase transgenic mouse model has been influential in assessing real-time in vivo estrogen receptor activation across a range of tissues and pathologies. Using this model we demonstrate novel temporally regulated peri-wound activation of estrogen signalling in female mice. Using histological methods we reveal that this signal is specifically localised to keratinocytes of the neoepidermis and wound margin dermal cells. Moreover using pharmacological agonists we reveal that ERβ induces ERE-mediated signal in both epidermal and dermal cells while ERα induces ERE-mediated signal in dermal cells alone. Collectively these novel data demonstrate rapid and regional activation of estrogen signalling in wounded skin. A more complete understanding of local hormonal signalling during repair is essential for the focussed development of new therapies for wound healing.
Resumo:
BACKGROUND: Over 50% of patients with head and neck squamous cell carcinoma (HNSCC) present with locoregionally advanced disease. Those at intermediate-to-high risk of recurrence after definitive therapy exhibit advanced disease based on tumour size or lymph node involvement, non-oropharynx primary sites, human papillomavirus (HPV)-negative oropharyngeal cancer, or HPV-positive oropharynx cancer with smoking history (>10-pack-years). Non-surgical approaches include concurrent chemoradiotherapy, induction chemotherapy followed by definitive radiotherapy or chemoradiotherapy, or radiotherapy alone. Following locoregional therapies (including surgical salvage of residual cervical nodes), no standard intervention exists. Overexpression of epidermal growth factor receptor (EGFR), an ErbB family member, is associated with poor prognosis in HNSCC. EGFR-targeted cetuximab is the only targeted therapy that impacts overall survival and is approved for HNSCC in the USA or Europe. However, resistance often occurs, and new approaches, such as targeting multiple ErbB family members, may be required. Afatinib, an irreversible ErbB family blocker, demonstrated antiproliferative activity in preclinical models and comparable clinical efficacy with cetuximab in a randomized phase II trial in recurrent or metastatic HNSCC. LUX-Head & Neck 2, a phase III study, will assess adjuvant afatinib versus placebo following chemoradiotherapy in primary unresected locoregionally advanced intermediate-to-high-risk HNSCC. METHODS/DESIGN: Patients with primary unresected locoregionally advanced HNSCC, in good clinical condition with unfavourable risk of recurrence, and no evidence of disease after chemoradiotherapy will be randomized 2:1 to oral once-daily afatinib (40 mg starting dose) or placebo. As HPV status will not be determined for eligibility, unfavourable risk is defined as non-oropharynx primary site or oropharynx cancer in patients with a smoking history (>10 pack-years). Treatment will continue for 18 months or until recurrence or unacceptable adverse events occur. The primary endpoint measure is duration of disease-free survival; secondary endpoint measures are disease-free survival rate at 2 years, overall survival, health-related quality of life and safety. DISCUSSION: Given the unmet need in the adjuvant treatment of intermediate-to-high-risk HNSCC patients, it is expected that LUX-Head & Neck 2 will provide new insights into treatment in this setting and might demonstrate the ability of afatinib to significantly improve disease-free survival, compared with placebo. TRIAL REGISTRATION: ClinicalTrials.gov NCT01345669.