176 resultados para Cluster-tree networks
Resumo:
OBJECTIVES: A new caval tree system was designed for realistic in vitro simulation. The objective of our study was to assess cannula performance for virtually wall-less versus standard percutaneous thin-walled venous cannulas in a setting of venous collapse in case of negative pressure. METHODS: For a collapsible caval model, a very flexible plastic material was selected, and a model with nine afferent veins was designed according to the anatomy of the vena cava. A flow bench was built including a lower reservoir holding the caval tree, built by taking into account the main afferent vessels and their flow provided by a reservoir 6 cm above. A cannula was inserted in this caval tree and connected to a centrifugal pump that, in turn, was connected to a reservoir positioned 83 cm above the second lower reservoir (after-load = 60 mmHg). Using the same pre-load, the simulated venous drainage for cardiopulmonary bypass was realized using a 24 F wall-less cannula (Smartcanula) and 25 F percutaneous cannula (Biomedicus), and stepwise increased augmentation (1500 RPM, 2000 and 2500 RPM) of venous drainage. RESULTS: For the thin wall and the wall-less cannulas, 36 pairs of flow and pressure measurements were realized for three different RPM values. The mean Q-values at 1500, 2000 and 2500 RPM were: 3.98 ± 0.01, 6.27 ± 0.02 and 9.81 ± 0.02 l/min for the wall-less cannula (P <0.0001), versus 2.74 ± 0.02, 3.06 ± 0.05, 6.78 ± 0.02 l/min for the thin-wall cannula (P <0.0001). The corresponding inlet pressure values were: -8.88 ± 0.01, -23.69 ± 0.81 and -70.22 ± 0.18 mmHg for the wall-less cannula (P <0.0001), versus -36.69 ± 1.88, -80.85 ± 1.71 and -101.83 ± 0.45 mmHg for the thin-wall cannula (P <0.0001). The thin-wall cannula showed mean Q-values 37% less and mean P values 26% more when compared with the wall-less cannula (P <0.0001). CONCLUSIONS: Our in vitro water test was able to mimic a negative pressure situation, where the wall-less cannula design performs better compared with the traditional thin-wall cannula.
Resumo:
A tree frog (Hyla arborea L., 1758) metapopulation in western Switzerland was studied during spring 2001. All potential calling ponds in an area of 350 km(2) were searched for tree frog calling males. Twenty-nine out of 111 ponds sheltered between 1 and 250 callers. Most ponds were occupied by less than 12 males. Pond parameters were measured at three different levels using field analysis and a Geographical Information System (GIS). The first level was water chemistry and pond-associated measures. The second level was the surrounding land use in a 30 m buffer around the pond. The third level consisted of landscape indices on a broader scale (up to 2 km). Logistic regression was applied to identify parameters that can predict the presence of calling males in a pond. Response variable was the presence or absence of callers. Four significant parameters allowed us to explain about 40% of the total deviance of the observed occupational pattern. Urbanization around the pond had a highly negative impact on the probability of presence of calling males. Hours of direct sunlight on the pond was positively correlated with callers. Higher water conductivity was associated with a lesser probability of species presence. Finally, the further the closest two-lane road, the higher the probability of callers presence. Our results show that presence or absence of callers is influenced by factors acting at various geographical scales.
Resumo:
A new strategy for incremental building of multilayer feedforward neural networks is proposed in the context of approximation of functions from R-p to R-q using noisy data. A stopping criterion based on the properties of the noise is also proposed. Experimental results for both artificial and real data are performed and two alternatives of the proposed construction strategy are compared.
Resumo:
Chromatin remodeling at specific genomic loci controls lymphoid differentiation. Here, we investigated the role played in this process by Kruppel-associated box (KRAB)-associated protein 1 (KAP1), the universal cofactor of KRAB-zinc finger proteins (ZFPs), a tetrapod-restricted family of transcriptional repressors. T-cell-specific Kap1-deleted mice displayed a significant expansion of immature thymocytes, imbalances in CD4(+)/CD8(+) cell ratios, and altered responses to TCR and TGFβ stimulation when compared to littermate KAP1 control mice. Transcriptome and chromatin studies revealed that KAP1 binds T-cell-specific cis-acting regulatory elements marked by the H3K9me3 repressive mark and enriched in Ikaros/NuRD complexes. Also, KAP1 directly controls the expression of several genes involved in TCR and cytokine signaling. Among these, regulation of FoxO1 seems to play a major role in this system. Likely responsible for tethering KAP1 to at least part of its genomic targets, a small number of KRAB-ZFPs are selectively expressed in T-lymphoid cells. These results reveal the so far unsuspected yet important role of KAP1-mediated epigenetic regulation in T-lymphocyte differentiation and activation.
Resumo:
Most amphibians examined so far show undifferentiated sex chromosomes. The heterogametic sex's identity, usually revealed through indirect means, often varies among closely related species or even populations (as do sex-linkage groups), suggesting great evolutionary instability of the sex-determining genes. Here we take advantage of a sex-specific marker that amplifies in several related species of European tree frogs (Hyla arborea group) to disclose a homogeneous pattern of male heterogamety. Besides relevance for evolutionary studies of sex determination in amphibians, our results have potential for addressing practical issues in conservation biology because sex reversal by anthropogenic endocrine disruptors is considered one possible cause of amphibian decline.
Resumo:
Counterfeit pharmaceutical products have become a widespread problem in the last decade. Various analytical techniques have been applied to discriminate between genuine and counterfeit products. Among these, Near-infrared (NIR) and Raman spectroscopy provided promising results.The present study offers a methodology allowing to provide more valuable information fororganisations engaged in the fight against counterfeiting of medicines.A database was established by analyzing counterfeits of a particular pharmaceutical product using Near-infrared (NIR) and Raman spectroscopy. Unsupervised chemometric techniques (i.e. principal component analysis - PCA and hierarchical cluster analysis - HCA) were implemented to identify the classes within the datasets. Gas Chromatography coupled to Mass Spectrometry (GC-MS) and Fourier Transform Infrared Spectroscopy (FT-IR) were used to determine the number of different chemical profiles within the counterfeits. A comparison with the classes established by NIR and Raman spectroscopy allowed to evaluate the discriminating power provided by these techniques. Supervised classifiers (i.e. k-Nearest Neighbors, Partial Least Squares Discriminant Analysis, Probabilistic Neural Networks and Counterpropagation Artificial Neural Networks) were applied on the acquired NIR and Raman spectra and the results were compared to the ones provided by the unsupervised classifiers.The retained strategy for routine applications, founded on the classes identified by NIR and Raman spectroscopy, uses a classification algorithm based on distance measures and Receiver Operating Characteristics (ROC) curves. The model is able to compare the spectrum of a new counterfeit with that of previously analyzed products and to determine if a new specimen belongs to one of the existing classes, consequently allowing to establish a link with other counterfeits of the database.
Resumo:
The vast majority of eukaryotic organisms reproduce sexually, yet the nature of the sexual system and the mechanism of sex determination often vary remarkably, even among closely related species. Some species of animals and plants change sex across their lifespan, some contain hermaphrodites as well as males and females, some determine sex with highly differentiated chromosomes, while others determine sex according to their environment. Testing evolutionary hypotheses regarding the causes and consequences of this diversity requires interspecific data placed in a phylogenetic context. Such comparative studies have been hampered by the lack of accessible data listing sexual systems and sex determination mechanisms across the eukaryotic tree of life. Here, we describe a database developed to facilitate access to sexual system and sex chromosome information, with data on sexual systems from 11,038 plant, 705 fish, 173 amphibian, 593 non-avian reptilian, 195 avian, 479 mammalian, and 11,556 invertebrate species.
Resumo:
The detrimental effects of genetic erosion on small isolated populations are widely recognized contrary to their interactions with environmental changes. The ability of genotypes to plastically respond to variability is probably essential for the persistence of these populations. Genetic erosion impact may be exacerbated if inbreeding affects plastic responses or if their maintenance were at higher phenotypic costs. To understand the interplay 'genetic erosion-fitness-phenotypic plasticity', we experimentally compared, in different environments, the larval performances and plastic responses to predation of European tree frogs (Hyla arborea) from isolated and connected populations. Tadpoles from isolated populations were less performant, but the traits affected were environmental dependant. Heterosis observed in crosses between isolated populations allowed attributing their low fitness to inbreeding. Phenotypic plasticity can be maintained in the face of genetic erosion as inducible defences in response to predator were identical in all populations. However, the higher survival and developmental costs for isolated populations in harsh conditions may lead to an additional fitness loss for isolated populations.
Resumo:
Contrasting with the situation found in birds and mammals, sex chromosomes are generally homomorphic in poikilothermic vertebrates. This homomorphy was recently shown to result from occasional X-Y recombinations (not from turnovers) in several European species of tree frogs (Hyla arborea, H. intermedia and H. molleri). Because of recombination, however, alleles at sex-linked loci were rarely diagnostic at the population level; support for sex linkage had to rely on multilocus associations, combined with occasional sex differences in allelic frequencies. Here, we use direct evidence, obtained from anatomical and histological analyses of offspring with known pedigrees, to show that the Eastern tree frog (H. orientalis) shares the same pair of sex chromosomes, with identical patterns of male heterogamety and complete absence of X-Y recombination in males. Conservation of an ancestral pair of sex chromosomes, regularly rejuvenated via occasional X-Y recombination, seems thus a widespread pattern among Hyla species. Sibship analyses also identified discrepancies between genotypic and phenotypic sex among offspring, associated with abnormal gonadal development, suggesting a role for sexually antagonistic genes on the sex chromosomes.
Resumo:
Two types of hydrogel microspheres have been developed. Fast ionotropic gelation of sodium alginate (Na-alg) in the presence of calcium ions was combined with slow covalent cross-linking of poly(ethylene glycol) (PEG) derivatives. For the first type, the fast obtainable Ca-alg hydrogel served as spherical matrix for the simultaneously occurring covalent cross-linking of multi-arm PEG derivative. A two-component interpenetrating network was formed in one step upon extruding the mixture of the two polymers into the gelation bath. For the second type, heterobifunctional PEG was grafted onto Na-alg prior to gelation. Upon extrusion of the polymer solution into the gelation bath, fast Ca-alg formation ensured the spherical shape and was accompanied by cross-linker-free covalent cross-linking of the PEG side chains. Thus, one-component hydrogel microspheres resulted. We present the physical properties of the hydrogel microspheres and demonstrate the feasibility of cell microencapsulation for both types of polymer networks.
Resumo:
Arbuscular mycorrhizal fungi are thought to have remained asexual for 400 million years although recent studies have suggested that considerable genetic and phenotypic variation could potentially exist in populations. A brief discussion of these multigenomic organisms is presented. (C) 2003 The Linnean Society of London.