377 resultados para Cerebral angiography
Resumo:
Sleep deprivation (SD) results in increased electroencephalographic (EEG) delta power during subsequent non-rapid eye movement sleep (NREMS) and is associated with changes in the expression of circadian clock-related genes in the cerebral cortex. The increase of NREMS delta power as a function of previous wake duration varies among inbred mouse strains. We sought to determine whether SD-dependent changes in circadian clock gene expression parallel this strain difference described previously at the EEG level. The effects of enforced wakefulness of incremental durations of up to 6 h on the expression of circadian clock genes (bmal1, clock, cry1, cry2, csnk1epsilon, npas2, per1, and per2) were assessed in AKR/J, C57BL/6J, and DBA/2J mice, three strains that exhibit distinct EEG responses to SD. Cortical expression of clock genes subsequent to SD was proportional to the increase in delta power that occurs in inbred strains: the strain that exhibits the most robust EEG response to SD (AKR/J) exhibited dramatic increases in expression of bmal1, clock, cry2, csnkIepsilon, and npas2, whereas the strain with the least robust response to SD (DBA/2) exhibited either no change or a decrease in expression of these genes and cry1. The effect of SD on circadian clock gene expression was maintained in mice in which both of the cryptochrome genes were genetically inactivated. cry1 and cry2 appear to be redundant in sleep regulation as elimination of either of these genes did not result in a significant deficit in sleep homeostasis. These data demonstrate transcriptional regulatory correlates to previously described strain differences at the EEG level and raise the possibility that genetic differences underlying circadian clock gene expression may drive the EEG differences among these strains.
Resumo:
For free-breathing, high-resolution, three-dimensional coronary magnetic resonance angiography (MRA), the use of intravascular contrast agents may be helpful for contrast enhancement between coronary blood and myocardium. In six patients, 0.1 mmol/kg of the intravascular contrast agent MS-325/AngioMARK was given intravenously followed by double-oblique, free-breathing, three-dimensional inversion-recovery coronary MRA with real-time navigator gating and motion correction. Contrast-enhanced, three-dimensional coronary MRA images were compared with images obtained with a T2 prepulse (T2Prep) without exogenous contrast. The contrast-enhanced images demonstrated a 69% improvement in the contrast-to-noise ratio (6.6 +/- 1.1 vs. 11.1 +/- 2.5; P < 0.01) compared with the T2Prep approach. By using the intravascular agent, extensive portions (> 80 mm) of the native left and right coronary system could be displayed consistently with sub-millimeter in-plane resolution. The intravascular contrast agent, MS-325/AngioMARK, leads to a considerable enhancement of the blood/muscle contrast for coronary MRA compared with T2Prep techniques. The clinical value of the agent remains to be defined in a larger patient series. J. Magn. Reson. Imaging 1999;10:790-799.
Resumo:
Introduction: Pulmonary fat embolism (PFE) can be a cause of death in cases with trauma, during orthopedic surgery and also in non-traumatic conditions, such as burns, pancreatitis, fatty liver or sickle cell disease. As PMA becomes more widespread, it is important to determine how it affects the diagnosis of PFE. Aims: The aim of this study was to determine if the oily contrast liquid used in PMA induces artefactual PFE, if such artefacts differ from original PFE and if PFE can be detected and graded before PMA. Material and methods: Cases of adults without signs of postmortem change and for which an autopsy with angiography was performed were selected for this study. Pulmonary biopsies of each lung were taken before and after the angiography as were fragments of each lung with a twin-edged knife during the autopsy. The samples were examined under the microscope without fixation or staining and after an Oil-Red O staining. PFE was graded according to Falci et al. Results: Non-artefactual (original) PFE was diagnosed in 4 cases on pre-PMA biopsies. As expected, structures with the aspect of PFE were present in all cases after angiography. The microscopical aspect of original and PMA induced PFE was identical. Grading of the PFE according to Falci et al. was depending on the quality of the biopsies. Conclusions: PMA with oily contrast induces artefactual PFE that cannot be visually differentiated from original PFE. Original PFE can however be diagnosed with pre-angiography biopsies. In order to assure the diagnosis and correct grading of PFE, the quality of the biopsy should be checked before PMA with oily contrast.
Resumo:
To enhance the clinical value of coronary magnetic resonance angiography (MRA), high-relaxivity contrast agents have recently been used at 3T. Here we examine a uniform bilateral shadowing artifact observed along the coronary arteries in MRA images collected using such a contrast agent. Simulations were performed to characterize this artifact, including its origin, to determine how best to mitigate this effect, and to optimize a data acquisition/injection scheme. An intraluminal contrast agent concentration model was used to simulate various acquisition strategies with two profile orders for a slow-infusion of a high-relaxivity contrast agent. Filtering effects from temporally variable weighting in k-space are prominent when a centric, radial (CR) profile order is applied during contrast infusion, resulting in decreased signal enhancement and underestimation of vessel width, while both pre- and postinfusion steady-state acquisitions result in overestimation of the vessel width. Acquisition during the brief postinfusion steady-state produces the greatest signal enhancement and minimizes k-space filtering artifacts.
Resumo:
The acquisition duration of most three-dimensional (3D) coronary magnetic resonance angiography (MRA) techniques is considerably prolonged, thereby precluding breathholding as a mechanism to suppress respiratory motion artifacts. Splitting the acquired 3D volume into multiple subvolumes or slabs serves to shorten individual breathhold duration. Still, problems associated with misregistration due to inconsistent depths of expiration and diaphragmatic drift during sustained respiration remain to be resolved. We propose the combination of an ultrafast 3D coronary MRA imaging sequence with prospective real-time navigator technology, which allows correction of the measured volume position. 3D volume splitting using prospective real-time navigator technology, was successfully applied for 3D coronary MRA in five healthy individuals. An ultrafast 3D interleaved hybrid gradient-echoplanar imaging sequence, including T2Prep for contrast enhancement, was used with the navigator localized at the basal anterior wall of the left ventricle. A 9-cm-thick volume, with in-plane spatial resolution of 1.1 x 2.2 mm, was acquired during five breathholds of 15-sec duration each. Consistently, no evidence of misregistration was observed in the images. Extensive contiguous segments of the left anterior descending coronary artery (48 +/- 18 mm) and the right coronary artery (75 +/- 5 mm) could be visualized. This technique has the potential for screening for anomalous coronary arteries, making it well suited as part of a larger clinical MR examination. In addition, this technique may also be applied as a scout scan, which allows an accurate definition of imaging planes for subsequent high-resolution coronary MRA.
Resumo:
Adequate supply of oxygen to the brain is critical for maintaining normal brain function. Severe hypoxia, such as that experienced during high altitude ascent, presents a unique challenge to brain oxygen (O2) supply. During high-intensity exercise, hyperventilation-induced hypocapnia leads to cerebral vasoconstriction, followed by reductions in cerebral blood flow (CBF), oxygen delivery (DO2), and tissue oxygenation. This reduced O2 supply to the brain could potentially account for the reduced performance typically observed during exercise in severe hypoxic conditions. The aims of this thesis were to document the effect of acute and chronic exposure to hypoxia on CBF control, and to determine the role of cerebral DO2 and tissue oxygenation in limiting performance during exercise in severe hypoxia. We assessed CBF, arterial O2 content (CaO2), haemoglobin concentration ([Hb]), partial pressure of arterial O2 (PaO2), cerebrovascular CO2 reactivity, ventilatory response to CO2, cerebral autoregulation (CA), and estimated cerebral DO2 (CBF ⨉ CaO2) at sea level (SL), upon ascent to 5,260 m (ALT1), and following 16 days of acclimatisation to 5,260 m (ALT16). We found an increase in CBF despite an elevated cerebrovascular CO2 reactivity at ALT1, which coincided with a reduced CA. Meanwhile, PaO2 was greatly decreased despite increased ventilatory drive at ALT1, resulting in a concomitant decrease in CaO2. At ALT16, CBF decreased towards SL values, while cerebrovascular CO2 reactivity and ventilatory drive were further elevated. Acclimatisation increased PaO2, [Hb], and therefore CaO2 at ALT16, but these changes did not improve CA compared to ALT1. No differences were observed in cerebral DO2 across SL, ALT1, and ALT16. Our findings demonstrate that cerebral DO2 is maintained during both acute and chronic exposure to 5,260 m, due to the reciprocal changes in CBF and CaO2. We measured middle cerebral artery velocity (MCAv: index of CBF), cerebral DO2, ventilation (VE), and performance during incremental cycling to exhaustion and 15km time trial cycling in both normoxia and severe hypoxia (11% O2, normobaric), with and without added CO2 to the inspirate (CO2 breathing). We found MCAv was higher during exercise in severe hypoxia compared in normoxia, while cerebral tissue oxygenation and DO2 were reduced. CO2 breathing was effective in preventing the development of hyperventilation-induced hypocapnia during intense exercise in both normoxia and hypoxia. As a result, we were able to increase both MCAv and cerebral DO2 during exercise in hypoxia with our CO2 breathing setup. However, we concomitantly increased VE and PaO2 (and presumably respiratory work) due to the increased hypercapnic stimuli with CO2 breathing, which subsequently contributed to the cerebral DO2 increase during hypoxic exercise. While we effectively restored cerebral DO2 during exercise in hypoxia to normoxic values with CO2 breathing, we did not observe any improvement in cerebral tissue oxygenation or exercise performance. Accordingly, our findings do not support the role of reduced cerebral DO2 in limiting exercise performance in severe hypoxia. -- Un apport adéquat en oxygène au niveau du cerveau est primordial pour le maintien des fonctions cérébrales normales. L'hypoxie sévère, telle qu'expérimentée au cours d'ascensions en haute altitude, présente un défi unique pour l'apport cérébral en oxygène (O2). Lors d'exercices à haute intensité, l'hypocapnie induite par l'hyperventilation entraîne une vasoconstriction cérébrale suivie par une réduction du flux sanguin cérébral (CBF), de l'apport en oxygène (DO2), ainsi que de l'oxygénation tissulaire. Cette réduction de l'apport en O2 au cerveau pourrait potentiellement être responsable de la diminution de performance observée au cours d'exercices en condition d'hypoxie sévère. Les buts de cette thèse étaient de documenter l'effet de l'exposition aiguë et chronique à l'hypoxie sur le contrôle du CBF, ainsi que de déterminer le rôle du DO2 cérébral et de l'oxygénation tissulaire comme facteurs limitant la performance lors d'exercices en hypoxie sévère. Nous avons mesuré CBF, le contenu artériel en oxygène (CaO2), la concentration en hémoglobine ([Hb]), la pression partielle artérielle en O2 (PaO2), la réactivité cérébrovasculaire au CO2, la réponse ventilatoire au CO2, et l'autorégulation cérébrale sanguine (CA), et estimé DO2 cérébral (CBF x CaO2), au niveau de la mer (SL), au premier jour à 5.260 m (ALT1) et après seize jours d'acclimatation à 5.260 m (ALT16). Nous avons trouvé des augmentations du CBF et de la réactivité cérébrovasculaire au CO2 après une ascension à 5.260 m. Ces augmentations coïncidaient avec une réduction de l'autorégulation cérébrale. Simultanément, la PaO2 était grandement réduite, malgré l'augmentation de la ventilation (VE), résultant en une diminution de la CaO2. Après seize jours d'acclimatation à 5.260 m, le CBF revenait autour des valeurs observées au niveau de la mer, alors que la réactivité cérébrovasculaire au CO2 et la VE augmentaient par rapport à ALT1. L'acclimatation augmentait la PaO2, la concentration en hémoglobine, et donc la CaO2, mais n'améliorait pas l'autorégulation cérébrale, comparé à ALT1. Aucune différence n'était observée au niveau du DO2 cérébral entre SL, ALT1 et ALT16. Nos résultats montrent que le DO2 cérébral est maintenu constant lors d'expositions aiguë et chronique à 5.260m, ce qui s'explique par la réciprocité des variations du CBF et de la CaO2. Nous avons mesuré la vitesse d'écoulement du sang dans l'artère cérébrale moyenne (MCAv : un indice du CBF), le DO2 cérébral, la VE et la performance lors d'exercice incrémentaux jusqu'à épuisement sur cycloergomètre, ainsi que des contre-la-montres de 15 km en normoxie et en hypoxie sévère (11% O2, normobarique) ; avec ajout ou non de CO2 dans le mélange gazeux inspiré. Nous avons trouvé que MCAv était plus haute pendant l'exercice hypoxique, comparé à la normoxie alors que le DO2 cérébral était réduit. L'ajout de CO2 dans le gaz inspiré était efficace pour prévenir l'hypocapnie induite par l'hyperventilation, qui se développe à l'exercice intense, à la fois en normoxie et en hypoxie. Nous avons pu augmenter MCAv et le DO2 cérébral pendant l'exercice hypoxique, grâce à l'ajout de CO2. Cependant, nous avons augmenté la VE et la PaO2 (et probablement le travail respiratoire) à cause de l'augmentation du stimulus hypercapnique. Alors que nous avons, grâce à l'ajout de CO2, efficacement restauré le DO2 cérébral au cours de l'exercice en hypoxie à des valeurs obtenues en normoxie, nous n'avons observé aucune amélioration dans l'oxygénation du tissu cérébral ou de la performance. En conséquence, nos résultats ne soutiennent pas le rôle d'un DO2 cérébral réduit comme facteur limitant de la performance en hypoxie sévère.
Resumo:
Subarachnoid haemorrhage (SAH) is a form of stroke that is associated with substantial morbidity, often as a result of cerebral ischaemia that occurs in the following days. These delayed deficits in blood flow have been traditionally attributed to cerebral vasospasm (the narrowing of large arteries), which can lead to cerebral infarction and poor neurological outcome. Data from recent studies, however, show that treatment of vasospasm in patients with SAH, using targeted medication, does not translate to better neurological outcomes, and argue against vasospasm being the sole cause of the delayed ischaemic complications. Cerebral autoregulation-a mechanism that maintains stability of cerebral blood flow in response to changes in cerebral perfusion pressure-has been reported to fail after SAH, often before vasospasm becomes apparent. Failure of autoregulation, therefore, has been implicated in development of delayed cerebral ischaemia. In this Review, we summarize current knowledge about the clinical effect of disturbed cerebral autoregulation following aneurysmal SAH, with emphasis on development of delayed cerebral ischaemia and clinical outcome, and provide a critical assessment of studies of cerebral autoregulation in SAH with respect to the method of blood-flow measurement. Better understanding of cerebral autoregulation following SAH could reveal mechanisms of blood-flow regulation that could be therapeutically targeted to improve patient outcome.
Resumo:
Le cerveau est l'organe avec les besoins en énergie les plus élevés du corps humain, et le glucose est un substrat énergétique cérébral essentiel. Ces dernières décennies, la compréhension de la neuroénergétique a beaucoup évolué et un rôle du lactate comme substrat énergétique important a été mis en évidence, notamment suite à l'introduction du modèle de l'ANLS (astrocyte-neuron lactate shuttle). Selon celui-ci, les astrocytes convertissent le glucose en lactate par réaction de glycolyse, puis il est transporté jusqu'aux neurones qui l'utilisent comme source d'énergie à travers le cycle de Krebs. Chez l'homme, divers travaux récents ont montré que le lactate peut servir de « carburant » cérébral chez le sujet sain, après effort intense ou chez le patient diabétique. La régulation métabolique et le rôle du lactate après lésion cérébrale aiguë sont encore peu connus. Présentation de l'article Le but de ce travail a été d'étudier le métabolisme cérébral du lactate chez les patients atteints de traumatisme crânien (TCC) sévère. Nous avons émis l'hypothèse que l'augmentation du lactate cérébral chez ces patients n'était pas associée de manière prédominante à une hypoxie ou une ischémie mais plutôt à une glycolyse aérobie, et également à une perfusion cérébrale normale. L'étude a porté sur une cohorte prospective de 24 patients avec TCC sévère admis au service de médecine intensive du CHUV (centre hospitalier universitaire vaudois), monitorés par un système combinant microdialyse cérébrale (outil permettant de mesurer divers métabolites cérébraux, tels que le lactate, le pyruvate et le glucose), mesure de la pression cérébrale en oxygène et de la pression intracrânienne. Cet outil nous a permis de déterminer si l'élévation du lactate était principalement associée à une glycolyse active ou plutôt à une hypoxie. L'utilisation du CTde perfusion a permis d'évaluer la relation entre les deux patterns d'élévation du lactate (glycolytique ou hypoxique) et la perfusion cérébrale globale. Nos résultats ont montré que l'augmentation du lactate cérébral chez les patients avec TCC sévère était associée de manière prédominante à une glycolyse aérobie plutôt qu'à une hypoxie/ischémie. D'autre part, nous avons pu confirmer que les épisodes de lactate glycolytique étaient toujours associés à une perfusion cérébrale normale ou augmentée, alors que les épisodes de lactate hypoxique étaient associés à une hypoperfusion cérébrale. Conclusions et perspectives Nos résultats, qui ont permis de mieux comprendre le métabolisme cérébral du lactate chez les patients avec TCC sévère, soutiennent le concept que le lactate est produit dans des conditions aérobes et pourrait donc être utilisé comme source d'énergie par le cerveau lésé pour subvenir à des besoins augmentas. Etant donné que la dysfonction énergétique est une des probables causes de perte neuronale après traumatisme crânien, ces résultats ouvrent des perspectives thérapeutiques nouvelles après agression cérébrale chez l'homme, visant à tester un potentiel effet neuroprotecteur via l'administration de lactate exogène.
Resumo:
When facing age-related cerebral decline, older adults are unequally affected by cognitive impairment without us knowing why. To explore underlying mechanisms and find possible solutions to maintain life-space mobility, there is a need for a standardized behavioral test that relates to behaviors in natural environments. The aim of the project described in this paper was therefore to provide a free, reliable, transparent, computer-based instrument capable of detecting age-related changes on visual processing and cortical functions for the purposes of research into human behavior in computational transportation science. After obtaining content validity, exploring psychometric properties of the developed tasks, we derived (Study 1) the scoring method for measuring cerebral decline on 106 older drivers aged ≥70 years attending a driving refresher course organized by the Swiss Automobile Association to test the instrument's validity against on-road driving performance (106 older drivers). We then validated the derived method on a new sample of 182 drivers (Study 2). We then measured the instrument's reliability having 17 healthy, young volunteers repeat all tests included in the instrument five times (Study 3) and explored the instrument's psychophysical underlying functions on 47 older drivers (Study 4). Finally, we tested the instrument's responsiveness to alcohol and effects on performance on a driving simulator in a randomized, double-blinded, placebo, crossover, dose-response, validation trial including 20 healthy, young volunteers (Study 5). The developed instrument revealed good psychometric properties related to processing speed. It was reliable (ICC = 0.853) and showed reasonable association to driving performance (R (2) = 0.053), and responded to blood alcohol concentrations of 0.5 g/L (p = 0.008). Our results suggest that MedDrive is capable of detecting age-related changes that affect processing speed. These changes nevertheless do not necessarily affect driving behavior.
Resumo:
Structurally segregated and functionally specialized regions of the human cerebral cortex are interconnected by a dense network of cortico-cortical axonal pathways. By using diffusion spectrum imaging, we noninvasively mapped these pathways within and across cortical hemispheres in individual human participants. An analysis of the resulting large-scale structural brain networks reveals a structural core within posterior medial and parietal cerebral cortex, as well as several distinct temporal and frontal modules. Brain regions within the structural core share high degree, strength, and betweenness centrality, and they constitute connector hubs that link all major structural modules. The structural core contains brain regions that form the posterior components of the human default network. Looking both within and outside of core regions, we observed a substantial correspondence between structural connectivity and resting-state functional connectivity measured in the same participants. The spatial and topological centrality of the core within cortex suggests an important role in functional integration.
Resumo:
In coronary magnetic resonance angiography, a magnetization-preparation scheme for T2 -weighting (T2 Prep) is widely used to enhance contrast between the coronary blood-pool and the myocardium. This prepulse is commonly applied without spatial selection to minimize flow sensitivity, but the nonselective implementation results in a reduced magnetization of the in-flowing blood and a related penalty in signal-to-noise ratio. It is hypothesized that a spatially selective T2 Prep would leave the magnetization of blood outside the T2 Prep volume unaffected and thereby lower the signal-to-noise ratio penalty. To test this hypothesis, a spatially selective T2 Prep was implemented where the user could freely adjust angulation and position of the T2 Prep slab to avoid covering the ventricular blood-pool and saturating the in-flowing spins. A time gap of 150 ms was further added between the T2 Prep and other prepulses to allow for in-flow of a larger volume of unsaturated spins. Consistent with numerical simulation, the spatially selective T2 Prep increased in vivo human coronary artery signal-to-noise ratio (42.3 ± 2.9 vs. 31.4 ± 2.2, n = 22, P < 0.0001) and contrast-to-noise-ratio (18.6 ± 1.5 vs. 13.9 ± 1.2, P = 0.009) as compared to those of the nonselective T2 Prep. Additionally, a segmental analysis demonstrated that the spatially selective T2 Prep was most beneficial in proximal and mid segments where the in-flowing blood volume was largest compared to the distal segments. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.
Resumo:
The diagnosis of focal status epilepticus (SE) can be challenging, particularly when clinical manifestations leave doubts about its nature, and electroencephalography (EEG) is not conclusive. This work addresses the utility of ictal (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET) in focal SE, which was performed in eight patients in whom SE was finally diagnosed. Clinical, MRI and EEG data were reviewed. (18)F-FDG-PET proved useful: (1) to establish the diagnosis of focal SE, when clinical elements were equivocal or the EEG did not show clear-cut epileptiform abnormalities; (2) to delineate the epileptogenic area in view of possible resective surgery; and (3) when clinical features, MRI and EEG were incongruent regarding the origin of SE. We suggest that ictal (18)F-FDG-PET may represent a valuable diagnostic tool in selected patients with focal SE or frequent focal seizures.
Resumo:
Aim: We asked whether myocardial flow reserve (MFR) by Rb-82 cardiac PET improve the selection of patients eligible for invasive coronary angiography (ICA). Material and Methods: We enrolled 26 consecutive patients with suspected or known coronary artery disease who performed dynamic Rb-82 PET/CT and (ICA) within 60 days; 4 patients who underwent revascularization or had any cardiovascular events between PET and ICA were excluded. Myocardial blood flow at rest (rMBF), at stress with adenosine (sMBF) and myocardial flow reserve (MFR=sMBF/rMBF) were estimated using the 1-compartment Lortie model (FlowQuant) for each coronary arteries territories. Stenosis severity was assessed using computer-based automated edge detection (QCA). MFR was divided in 3 groups: G1:MFR<1.5, G2:1.5≤MFR<2 and G3:2≤MFR. Stenosis severity was graded as non-significant (<50% or FFR ≥0.8), intermediate (50%≤stenosis<70%) and severe (≥70%). Correlation between MFR and percentage of stenosis were assessed using a non-parametric Spearman test. Results: In G1 (44 vessels), 17 vessels (39%) had a severe stenosis, 11 (25%) an intermediate one, and 16 (36%) no significant stenosis. In G2 (13 vessels), 2 (15%) vessels presented a severe stenosis, 7 (54%) an intermediate one, and 4 (31%) no significant stenosis. In G3 (9 vessels), 0 vessel presented a severe stenosis, 1 (11%) an intermediate one, and 8 (89%) no significant stenosis. Of note, among 11 patients with 3-vessel low MFR<1.5 (G1), 9/11 (82%) had at least one severe stenosis and 2/11 (18%) had at least one intermediate stenosis. There was a significant inverse correlation between stenosis severity and MFR among all 66 territories analyzed (rho= -0.38, p=0.002). Conclusion: Patients with MFR>2 could avoid ICA. Low MFR (G1, G2) on a vessel-based analysis seems to be a poor predictor of severe stenosis severity. Patients with 3-vessel low MFR would benefit from ICA as they are likely to present a significant stenosis in at least one vessel.