215 resultados para Ce Oxidation
Resumo:
ABSTRACT : Objective: to compare the metabolic effects of fructose in healthy males and females Research Design And Methods: Fasting metabolic profile and hepatic insulin sensitivity were assessed by means of a hyperglycemic clamp in 16 healthy young males and female subjects after a 6-day fructose overfeeding Results: Fructose overfeeding increased fasting triglyceride concentrations by 71 % in males vs 16% in females (p<0.05). Endogenous glucose production was increased by 12%, alanin aminotransferase concentration was increased by 38%, and fasting insulin concentrations was increased by 14% after fructose overfeeding in males (all p<0.05), but were not significantly altered in females. Fasting plasma free fatty acids and lipid oxidation were inhibited by fructose in males, but not in females Conclusions: Short term fructose overfeeding produces hypertriglyceridemia and hepatic insulin resistance in males, but these effects are markedly blunted in healthy young females. Rapport de synthèse : Objectif : De récentes études ont démontré que l'ingestion de hautes doses de fructose modifie certains paramètres métaboliques. Peu d'entre elles se sont cependant intéressées à déterminer si les effets métaboliques du fructose étaient dépendants du sexe. L'objectif de la présente étude était donc de comparer les effets du fructose chez des volontaires sains, hommes et femmes. Méthode : Le profil métabolique à jeun et la sensibilité hépatique à l'insuline ont été déterminés au moyen d'un clamp hyperglycémique chez un collectif de 16 jeunes hommes et femmes après une période de 6 jours de régime riche en fructose. Résultats : La concentration de triglycérides à jeun après ce régime était augmentée de 71% chez les hommes contre 16% chez les femmes (p<0.05). La production endogène de glucose était augmentée de 12%, l'alanine aminotransférase de 38% et la concentration d'insuline à jeun de 14% chez les hommes (p<0.05 pour tous). Chez les femmes, ces paramètres n'étaient au contraire pas significativement modifiés. L'oxydation des acides gras libres et des lipides à jeun était inhibée par le fructose chez les hommes, mais pas chez les femmes. Conclusion : Ces résultats indiquent qu'une suralimentation de courte durée en fructose induit chez l'homme une hypertriglycéridémie et une résistance hépatique à l'insuline, alors que chez la femme jeune, ces effets sont nettement atténués. Il reste à éclaircir de manière plus approfondie les mécanismes sous-tendant ces différences.
Resumo:
INTRODUCTION: urinary incontinence (UI) is a phenomenon with high prevalence in hospitalized elderly patients, effecting up to 70% of patients requiring long term care. However, despite the discomfort it causes and its association with functional decline, it seems to be given insufficient attention by nurses in geriatric care. OBJECTIVES: to assess the prevalence of urinary incontinence in geriatric patients at admission and the level of nurse involvement as characterized by the explicit documentation of UI diagnosis in the patient's record, prescription of nursing intervention, or nursing actions related to UI. METHODS: cross-sectional retrospective chart review. One hundred cases were randomly selected from those patients 65 years or older admitted to the geriatric ward of a university hospital. The variables examined included: total and continence scores on the Measure of Functional Independence (MIF), socio-demographic variables, presence of a nursing diagnosis in the medical record, prescription of or documentation of a nursing intervention related to UI. RESULTS: the prevalence of urinary incontinence was 72 % and UI was positively correlated with a low MIF score, age and status of awaiting placement. Of the examined cases, nursing diagnosis of UI was only documented in 1.4 % of cases, nursing interventions were prescribed in 54 % of cases, and at least one nursing intervention was performed in 72 % of cases. The vast majority of the interventions were palliative. DISCUSSION: the results on the prevalence of IU are similar to those reported in several other studies. This is also the case in relation to nursing interventions. In this study, people with UI were given the same care regardless of their MIF score MIF, age or gender. One limitation of this study is that it is retrospective and therefore dependent on the quality of the nursing documentation. CONCLUSIONS: this study is novel because it examines UI in relation to nursing interventions. It demonstrates that despite a high prevalence of UI, the general level of concern for nurses remains relatively low. Individualized care is desirable and clinical innovations must be developed for primary and secondary prevention of UI during hospitalization.
Resumo:
Beta-oxidation of the conjugated linoleic acid 9-cis,11-trans-octadecadienoic acid (rumenic acid) was analyzed in vivo in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate production in the peroxisome. Polyhydroxyalkanoate is synthesized by the polymerization of the beta-oxidation intermediates 3-hydroxyacyl-CoAs via a bacterial polyhydroxyalkanoate synthase targeted to the peroxisome. The amount of polyhydroxyalkanaote synthesized from the degradation of rumenic acid was found to be similar to the amount synthesized from the degradation of 10-trans,12-cis-octadecadienoic acid, oleic acid or 10-cis-heptadecenoic acid. Furthermore, the degradation of 10-cis-heptadecenoic acid was found to be unaffected by the presence of rumenic acid in the media. Efficient degradation of rumenic acid was found to be independent of the Delta(3,5),Delta(2,4)-dienoyl-CoA isomerase but instead relied on the presence of Delta(3),Delta(2)-enoyl-CoA isomerase activity. The presence of the unsaturated monomer 3-hydroxydodecenoic acid in polyhydroxyalkanoate derived from rumenic acid degradation was found to be dependent on the presence of a Delta(3),Delta(2)-enoyl-CoA isomerase activity. Together, these data indicate that rumenic acid is mainly degraded in vivo in S. cerevisiae through a pathway requiring only the participation of the auxiliary enzymes Delta(3),Delta(2)-enoyl-CoA isomerase, along with the enzyme of the core beta-oxidation cycle.
Resumo:
This review summarizes the rationale for personalized exercise training in obesity and diabetes, targeted at the level of maximal lipid oxidation as can be determined by exercise calorimetry. This measurement is reproducible and reflects muscles' ability to oxidize lipids. Targeted training at this level is well tolerated, increases the ability to oxidize lipids during exercise and improves body composition, lipid and inflammatory status, and glycated hemoglobin, thus representing a possible future strategy for exercise prescription in patients suffering from obesity and diabetes.
Resumo:
The purpose of this study was to measure postabsorptive fat oxidation at rest and to assess the association between fat mass and fat oxidation rate in prepubertal children, who were assigned to two groups: 35 obese children (weight, 44.5 +/- 9.7 kg; fat mass; 31.7 +/- 5.4%) and 37 nonobese children (weight, 30.8 +/- 6.8 kg; fat mass, 17.5 +/- 6.7%). Postabsorptive fat oxidation expressed in absolute value was significantly higher in obese than in nonobese children (31.4 +/- 9.7 mg/min vs 21.9 +/- 10.2 mg/min; p < 0.001) but not when adjusted for fat-free mass by analysis of covariance with fat-free mass as the covariate (28.2 +/- 10.6 mg/min vs 24.9 +/- 10.5 mg/min). In obese children and in the total group, fat mass and fat oxidation were significantly correlated (r = 0.65; p < 0.001). The slope of the relationship indicated that for each 10 kg additional fat mass, resting fat oxidation increased by 18 gm/day. We conclude that obese prepubertal children have a higher postabsorptive rate of fat oxidation than nonobese children. This metabolic process may favor the achievement of a new equilibrium in fat balance, opposing further adipose tissue gain.
Resumo:
Endurance training improves exercise performance and insulin sensitivity, and these effects may be in part mediated by an enhanced fat oxidation. Since n-3 and n-9 unsaturated fatty acids may also increase fat oxidation, we hypothesised that a diet enriched in these fatty acids may enhance the effects of endurance training on exercise performance, insulin sensitivity and fat oxidation. To assess this hypothesis, sixteen normal-weight sedentary male subjects were randomly assigned to an isoenergetic diet enriched with fish and olive oils (unsaturated fatty acid group (UFA): 52 % carbohydrates, 34 % fat (12 % SFA, 12 % MUFA, 5 % PUFA), 14 % protein), or a control diet (control group (CON): 62 % carbohydrates, 24 % fat (12 % SFA, 6 % MUFA, 2 % PUFA), 14 % protein) and underwent a 10 d gradual endurance training protocol. Exercise performance was evaluated by measuring VO2max and the time to exhaustion during a cycling exercise at 80 % VO2max; glucose homeostasis was assessed after ingestion of a test meal. Fat oxidation was assessed by indirect calorimetry at rest and during an exercise at 50 % VO2max. Training significantly increased time to exhaustion, but not VO2max, and lowered incremental insulin area under the curve after the test meal, indicating improved insulin sensitivity. Those effects were, however, of similar magnitude in UFA and CON. Fat oxidation tended to increase in UFA, but not in CON. This difference was, however, not significant. It is concluded that a diet enriched with fish- and olive oil does not substantially enhance the effects of a short-term endurance training protocol in healthy young subjects.
Resumo:
This study aimed to compare the effects of 2 different prior endurance exercises on subsequent whole-body fat oxidation kinetics. Fifteen men performed 2 identical submaximal incremental tests (Incr2) on a cycle ergometer after (i) a ∼40-min submaximal incremental test (Incr1) followed by a 90-min continuous exercise performed at 50% of maximal aerobic power-output and a 1-h rest period (Heavy); and (ii) Incr1 followed by a 2.5-h rest period (Light). Fat oxidation was measured using indirect calorimetry and plotted as a function of exercise intensity during Incr1 and Incr2. A sinusoidal equation, including 3 independent variables (dilatation, symmetry and translation), was used to characterize the fat oxidation kinetics and to determine the intensity (Fat(max)) that elicited the maximal fat oxidation (MFO) during Incr. After the Heavy and Light trials, Fat(max), MFO, and fat oxidation rates were significantly greater during Incr2 than Incr1 (p < 0.001). However, Δ (i.e., Incr2-Incr1) Fat(max), MFO, and fat oxidation rates were greater in the Heavy compared with the Light trial (p < 0.05). The fat oxidation kinetics during Incr2(Heavy) showed a greater dilatation and rightward asymmetry than Incr1(Heavy), whereas only a greater dilatation was observed in Incr2(Light) (p < 0.05). This study showed that although to a lesser extent in the Light trial, both prior exercise sessions led to an increase in Fat(max), MFO, and absolute fat oxidation rates during Incr2, inducing significant changes in the shape of the fat oxidation kinetics.
Resumo:
Document vidéo réalisé autour d'un stage de terrain à Lourdes effectué par des étudiantEs de l'UNIL et organisé par Laurent Amiotte Suchet (Maître assistant à l'Observation des religions en Suisse).
Resumo:
With the aim of understanding the mechanisms that control the metamorphic transition from the CH4- to the H2O-(CO2)-dominated fluid zone in the Helvetic domain of the Central Alps of Switzerland, fluid inclusions in quartz, illite ``crystallinity'' index, vitrinite reflectance, and the stable isotope compositions of vein and whole rock minerals and fluids trapped in quartz were investigated along four cross-sections. Increasing temperature during prograde metamorphism led to the formation of dry gas by hydrocarbon cracking in the CH4-zone. Fluid immiscibility in the H2O-CH4-(CO2)-NaCl system resulted in cogenetic, CH4- and H2O-dominated fluid inclusions. In the CH4-zone, fluids were trapped at temperatures <= 270 +/- 5 degrees C. The end of the CH4-zone is markedby a sudden increase of CO2 content in the gas phase of fluid inclusions. At temperatures > 270 +/- 5 degrees C, in the H2O-zone, the total amount of volatiles within the fluid decreased below 1 mol% with no immiscibility. This resulted m total homogenization temperatures of H2O-(CO2-CH4)-NaCl inclusions below 180 degrees C. Hydrogen isotope compositions of methane in fluid inclusion have delta D values of less than -100 parts per thousand in the CH4-zone, typical for an origin through cracking of higher hydrocarbons, but where the methane has not equilibrated with the pore water. delta D values of fluid inclusion water are around -40 parts per thousand., in isotopic equilibrium with phyllosilicates of the whole rocks. Within the CH4 to H2O(CO2) transition zone, delta D(H2O) values in fluid inclusions decrease to -130 parts per thousand interpreted to reflect the contribution of deuterium depleted water from methane oxidation. In the H2O-zone, delta D(H2O) values increase again towards an average of -30 parts per thousand which is again consistent with isotopic equilibrium with host-rock phyllosilicates. delta C-13 values of methane in fluid inclusions from the CH4-zone are around -27 parts per thousand in isotopic equilibrium with calcite in veins and whole rocks. The delta C-13(CH4) values decrease to less than -35 parts per thousand at the transition to the H2O-zone and are no longer in equilibrium with the carbonates in the whole rocks. delta C-13 values of CO, are variable but too low to be in equilibrium with the wall rock fluids, compatible with a contribution of CO2 from closed system oxidation of methane. Differences in isotopic composition between host-rock and Alpine fissure carbonate are generally small, suggesting that the amount of CO2 produced by oxidation of methane was small compared to the C-budget in the rocks and local pore fluids were buffered by the wall rocks during precipitation of calcite within the fissures. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Arabidopsis expressing the castor bean (Ricinus communis) oleate 12-hydroxylase or the Crepis palaestina linoleate 12-epoxygenase in developing seeds typically accumulate low levels of ricinoleic acid and vernolic acid, respectively. We have examined the presence of a futile cycle of fatty acid degradation in developing seeds using the synthesis of polyhydroxyalkanoate (PHA) from the intermediates of the peroxisomal beta-oxidation cycle. Both the quantity and monomer composition of the PHA synthesized in transgenic plants expressing the 12-epoxygenase and 12-hydroxylase in developing seeds revealed the presence of a futile cycle of degradation of the corresponding unusual fatty acids, indicating a limitation in their stable integration into lipids. The expression profile of nearly 200 genes involved in fatty acid biosynthesis and degradation has been analyzed through microarray. No significant changes in gene expression have been detected as a consequence of the activity of the 12-epoxygenase or the 12-hydroxylase in developing siliques. Similar results have also been obtained for transgenic plants expressing the Cuphea lanceolata caproyl-acyl carrier protein thioesterase and accumulating high amounts of caproic acid. Only in developing siliques of the tag1 mutant, deficient in the accumulation of triacylglycerols and shown to have a substantial futile cycling of fatty acids toward beta-oxidation, have some changes in gene expression been detected, notably the induction of the isocitrate lyase gene. These results indicate that analysis of peroxisomal PHA is a better indicator of the flux of fatty acid through beta-oxidation than the expression profile of genes involved in lipid metabolism.