167 resultados para CHROMATOGRAPHY-MASS-SPECTROMETRY
Resumo:
An exhaustive classification of matrix effects occurring when a sample preparation is performed prior to liquid-chromatography coupled to mass spectrometry (LC-MS) analyses was proposed. A total of eight different situations were identified allowing the recognition of the matrix effect typology via the calculation of four recovery values. A set of 198 compounds was used to evaluate matrix effects after solid phase extraction (SPE) from plasma or urine samples prior to LC-ESI-MS analysis. Matrix effect identification was achieved for all compounds and classified through an organization chart. Only 17% of the tested compounds did not present significant matrix effects.
Resumo:
The Summer Olympic Games constitute the biggest concentration of human sports and activities in a particular place and time since 776 BCE, when the written history of the Olympic Games in Olympia began. Summer and Winter Olympic anti-doping laboratories, accredited by the International Olympic Committee in the past and the World Anti-Doping Agency in the present times, acquire worldwide interest to apply all new analytical advancements in the fight against doping in sports, hoping that this major human event will not become dirty by association with this negative phenomenon. This article summarizes the new analytical progresses, technologies and knowledge used by the Olympic laboratories, which for the vast majority of them are, eventually, incorporated into routine anti-doping analysis.
Resumo:
The aim of this work is to present a new concept, called on-line desorption of dried blood spots (on-line DBS), allowing the direct analysis of a dried blood spot coupled to liquid chromatography mass spectrometry device (LC/MS). The system is based on an inox cell which can receive a blood sample (10 microL) previously spotted on a filter paper. The cell is then integrated into LC/MS system where the analytes are desorbed out of the paper towards a column switching system ensuring the purification and separation of the compounds before their detection on a single quadrupole MS coupled to atmospheric pressure chemical ionisation (APCI) source. The described procedure implies that no pretreatment is necessary in spite the analysis is based on whole blood sample. To ensure the applicability of the concept, saquinavir, imipramine, and verapamil were chosen. Despite the use of a small sampling volume and a single quadrupole detector, on-line DBS allowed the analyses of these three compounds over their therapeutic concentrations from 50 to 500 ng/mL for imipramine and verapamil and from 100 to 1000 ng/mL for saquinavir. Moreover, the method showed good repeatability with relative standard deviation (RSD) lower than 15% based on two levels of concentration (low and high). Function responses were found to be linear over the therapeutic concentration for each compound and were used to determine the concentrations of real patient samples for saquinavir. Comparison of the founded values with those of a validated method used routinely in a reference laboratory showed a good correlation between the two methods. Moreover, good selectivity was observed ensuring that no endogenous or chemical components interfered with the quantitation of the analytes. This work demonstrates the feasibility and applicability of the on-line DBS procedure for bioanalysis.
Resumo:
Suicide by self-poisoning is rather common around the world. This paper presents an exceptional complex suicide in which nicotine was applied in the form of self-made patches soaked with an extraction from fine-cut tobacco. In addition, the 51-year-old suicide victim took a lethal dose of diphenhydramine. Toxicological analysis also revealed the presence of tetrazepam in subtherapeutic concentrations. The scene of death suggested an autoerotic accident at first, as the body was tied with tapes, cables and handcuffs. As a result of the entire investigations, the fatality had to be classified as a suicidal intoxication by nicotine and diphenhydramine.
Resumo:
The aim of the study is to present the application of a headspace-gas chromatography-mass spectrometry (HS-GC-MS) method for the determination of the carbon monoxide (CO) blood concentration and to compare it with carboxyhemoglobin (HbCO) saturation. In postmortem cases, the HbCO measured by spectrophotometry frequently leads to inaccurate results due to inadequate samples or analyses. The true role of CO intoxication in the death of a person could be misclassified. The estimation of HbCO from HS-GC-MS CO measurements provides helpful information by determining the total CO levels (CO linked to hemoglobin (HbCO) and CO dissociated from hemoglobin). The CO concentrations were converted in HbCO saturation levels to define cutoff blood CO values. CO limits were defined as less than 1 μmol/mL for living persons, less than 1.5 μmol/mL for dead persons without CO exposure, and greater than 3 μmol/mL for dead persons with clear CO poisoning.
Resumo:
The authenticity of vegetable oils consumed in Slovenia and Croatia was investigated by carbon isotope analysis of the individual fatty acids by the use of gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS), and through carbon isotope analysis of the bulk oil. The fatty acids from samples of olive, pumpkin, sunflower, maize, rape, soybean, and sesame oils were separated by alkaline hydrolysis and derivatized to methyl esters for chemical characterization by capillary gas chromatography/mass spectrometry (GC/MS) prior to isotopic analysis. Enrichment in heavy carbon isotope (C-13) of th, bulk oil and of the individual fatty acids are related to (1) a thermally induced degradation during processing (deodorization, steam washing, or bleaching), (2) hydrolytic rancidity (lipolysis) and oxidative rancidity of the vegetable oils during storage, and (3) the potential blend with refined oil or other vegetable oils. The impurity or admixture of different oils may be assessed from the delta C-13(16:0) VS. delta C-13(18:1) covariations. The fatty acid compositions of Slovenian and Croatian olive oils are compared with those from the most important Mediterranean producer countries (Spain, Italy, Greece, and France).
Resumo:
BACKGROUND: Conversion of glucose into lipid (de novo lipogenesis; DNL) is a possible fate of carbohydrate administered during nutritional support. It cannot be detected by conventional methods such as indirect calorimetry if it does not exceed lipid oxidation. OBJECTIVE: The objective was to evaluate the effects of carbohydrate administered as part of continuous enteral nutrition in critically ill patients. DESIGN: This was a prospective, open study including 25 patients nonconsecutively admitted to a medicosurgical intensive care unit. Glucose metabolism and hepatic DNL were measured in the fasting state or after 3 d of continuous isoenergetic enteral feeding providing 28%, 53%, or 75% carbohydrate. RESULTS: DNL increased with increasing carbohydrate intake (f1.gif" BORDER="0"> +/- SEM: 7.5 +/- 1.2% with 28% carbohydrate, 9.2 +/- 1.5% with 53% carbohydrate, and 19.4 +/- 3.8% with 75% carbohydrate) and was nearly zero in a group of patients who had fasted for an average of 28 h (1.0 +/- 0.2%). In multiple regression analysis, DNL was correlated with carbohydrate intake, but not with body weight or plasma insulin concentrations. Endogenous glucose production, assessed with a dual-isotope technique, was not significantly different between the 3 groups of patients (13.7-15.3 micromol * kg(-1) * min(-1)), indicating impaired suppression by carbohydrate feeding. Gluconeogenesis was measured with [(13)C]bicarbonate, and increased as the carbohydrate intake increased (from 2.1 +/- 0.5 micromol * kg(-1) * min(-1) with 28% carbohydrate intake to 3.7 +/- 0.3 micromol * kg(-1) * min(-1) with 75% carbohydrate intake, P: < 0. 05). CONCLUSION: Carbohydrate feeding fails to suppress endogenous glucose production and gluconeogenesis, but stimulates DNL in critically ill patients.
Resumo:
Introduction: We report a case of cefepime intoxication with acute severe neurologic symptoms, which was treated by temporary hemodialysis. Patients (or Materials) and Methods: Cefepime 2 g BID for endovascular prosthesis infection was prescribed to a frail, chronically ill 88-year-old woman with a serum creatinine of 199 μmol/L and an estimated creatinine clearance of 13 mL/min (Cockroft formula). Two days later, she was transferred to a neurocritical care unit because of acute aphasia, myoclonic jerks, and delirium with a Glasgow coma scale score of 12/15. The following day, in the absence of other causes, cefepime intoxication was hypothesized, and cefepime was withdrawn after a total of 7 doses = 14 g. Over the next 24 hours, two 3-hour hemodialysis (HD) sessions were performed under cefepime concentration monitoring. Results: Cefepime plasma levels were measured by liquid chromatography/ mass spectrometry. There is no validated reference range, but a study (Chapuis T et al, Critical Care, 2010) found a 50% risk of neurotoxicity with residual levels > 15 mg/L. In our patient, levels were 83.3 mg/L 10 hours after last dose, 24.1 mg/L immediately after the first HD session, 13.4 mg/L immediately before the second HD session, and 2.5 mg/L immediately after the second HD session. The patient made a full clinical recovery over the next 48 hours. The 70% to 80% fall in plasmatic levels observed during each HD session is in accordance with literature data (Schmaldienst S et al, Eur J Clin Pharmacol, 2000, and Manyor LM et al, Pharmacotherapy, 2008). According to kinetic simulation, cefepime dropped at a concentration < 15 mg/L 15 hours earlier with HD than it would have without. Conclusion: Neuropsychiatric adverse effects of beta-lactam antibiotics can be easily overlooked by clinicians. One should be especially cautious with their use in very old and frail patients in whom plasma creatinine poorly estimates renal function and cognitive impairment is highly prevalent. Temporary hemodialysis effectively clears cefepime, but its role in hastening clinical recovery may be limited.
Resumo:
Organic geochemical and stable isotope investigations were performed to provide an insight into the depositional environments, origin and maturity of the organic matter in Jurassic and Cretaceous formations of the External Dinarides. A correlation is made among various parameters acquired from Rock-Eval, gas chromatography-mass spectrometry data and isotope analysis of carbonates and kerogen. Three groups of samples were analysed. The first group includes source rocks derived from Lower Jurassic limestone and Upper Jurassic ``Leme'' beds, the second from Upper Cretaceous carbonates, while the third group comprises oil seeps genetically connected with Upper Cretaceous source rocks. The carbon and oxygen isotopic ratios of all the carbonates display marine isotopic composition. Rock-Eval data and maturity parameter values derived from biomarkers define the organic matter of the Upper Cretaceous carbonates as Type I-S and Type II-S kerogen at the low stage of maturity up to entering the oil-generating window. Lower and Upper Jurassic source rocks contain early mature Type III mixed with Type IV organic matter. All Jurassic and Cretaceous potential source rock extracts show similarity in triterpane and sterane distribution. The hopane and sterane distribution pattern of the studied oil seeps correspond to those from Cretaceous source rocks. The difference between Cretaceous oil seeps and potential source rock extracts was found in the intensity and distribution of n-alkanes, as well as in the abundance of asphaltenes which is connected to their biodegradation stage. In the Jurassic and Cretaceous potential source rock samples a mixture of aromatic hydrocarbons with their alkyl derivatives were indicated, whereas in the oil seep samples extracts only asphaltenes were observed.
Resumo:
Citalopram, a new bicyclic antidepressant, is the most selective serotonin reuptake inhibitor. In a number of double-blind controlled studies, citalopram was compared to placebo and to known tricyclic antidepressants. These studies have shown their efficacy and good safety. The inefficacy of a psychotropic treatment in at least 20% of depressives has led a number of authors to propose original drug combinations and associations, like antidepressant/lithium (Li), antidepressant/sleep deprivation (agrypnia), antidepressant/ECT, or antidepressant/LT3. The aim of this investigation is to evaluate the clinical effectiveness and safety of a combined citalopram/lithium treatment in therapy-resistant patients, taking account of serotonergic functions, as tested by the fenfluramine/prolactin test, and of drug pharmacokinetics and pharmacogenetics of metabolism. DESIGN OF THE STUDY: A washout period of 3 days before initiating the treatment is included. After an open treatment phase of 28 days (D) with citalopram (20 mg D1-D3; 40 mg D4-D14; 40 or 60 mg D15-D28; concomitant medication allowed: chloral, chlorazepate), the nonresponding patients [less than 50% improvement in the total score on the 21 item-Hamilton Depression Rating Scale (HDRS)] are selected and treated with or without Li (randomized in double-blind conditions: citalopram/Li or citalopram/placebo) during the treatment (D29-D35). Thereafter, all patients included in the double-blind phase subsequently receive an open treatment with citalopram/Li for 7 days (D36-D42). The hypothesis of a relationship between serotoninergic functions in patients using the fenfluramine/prolactin test (D1) and the clinical response to citalopram (and Li) is assessed. Moreover, it is evaluated whether the pharmacogenetic status of the patients, as determined by the mephenytoin/dextromethorphan test (D0-D28), is related to the metabolism of fenfluramine and citalopram, and also to the clinical response. CLINICAL ASSESSMENT: Patients with a diagnosis of major depressive disorders according to DSM III are submitted to a clinical assessment of D1, D7, D14, D28, D35, D42: HDRS, CGI (clinical global impression), VAS (visual analog scales for self-rating of depression), HDRS (Hamilton depression rating scale, 21 items), UKU (side effects scale), and to clinical laboratory examens, as well as ECG, control of weight, pulse, blood pressure at D1, D28, D35. Fenfluramine/prolactin test: A butterfly needle is inserted in a forearm vein at 7 h 45 and is kept patent with liquemine. Samples for plasma prolactin, and d- and l-fenfluramine determinations are drawn at 8 h 15 (base line). Patients are given 60 mg fenfluramine (as a racemate) at 8 h 30. Kinetic points are determined at 9 h 30, 10 h 30, 11 h 30, 12 h 30, 13 h 30. Plasma levels of d- and l-fenfluramine are determined by gas chromatography and prolactin by IRNA. Mephenytoin/dextromethorphan test: Patients empty their bladders before the test; they are then given 25 mg dextropethorphan and 100 mg mephenytoin (as a racemate) at 8 h 00. They collect all urines during the following 8 hours. The metabolic ratio is determined by gas chromatography (metabolic ratio dextromethorphan/dextrorphan greater than 0.3 = PM (poor metabolizer); mephenytoin/4-OH-mephenytoin greater than 5.6, or mephenytoin S/R greater than 0.8 = PM). Citalopram plasma levels: Plasma levels of citalopram, desmethylcitalopram and didesmethylcitalopram are determined by gas chromatography--mass spectrometry. RESULTS OF THE PILOT STUDY. The investigation has been preceded by a pilot study including 14 patients, using the abovementioned protocol, except that all nonresponders were medicated with citalopram/Li on D28 to D42. The mean total score (n = 14) on the 21 item Hamilton scale was significantly reduced after the treatment, ie from 26.93 +/- 5.80 on D1 to 8.57 +/- 6.90 on D35 (p less than 0.001). A similar patCitalopram, a new bicyclic antidepressant, is the most selective serotonin reu
Resumo:
L'exposition aux poussières de bois est associé à un risque accru d'adénocarcinomes des fosses nasales et des sinus paranasaux (SNC, 'Sinonasal cancer') chez les travailleurs du bois. Les poussières de bois sont ainsi reconnues comme cancérogènes avérés pour l'homme par le Centre international de Recherche sur le Cancer (CIRC). Toutefois, l'agent causal spécifique et le mécanisme sous-jacent relatifs au cancer lié aux poussières de bois demeurent inconnus. Une possible explication est une co-exposition aux poussières de bois et aux Hydrocarbures Aromatiques Polycycliques (HAP), ces derniers étant potentiellement cancérogènes. Dans les faits, les travailleurs du bois sont non seulement exposés aux poussières de bois naturel, mais également à celles générées lors d'opérations effectuées à l'aide de machines (ponceuses, scies électriques, etc.) sur des finitions de bois (bois traités) ou sur des bois composites, tels que le mélaminé et les panneaux de fibres à densité moyenne (MDF, 'Medium Density Fiberboard'). Des HAP peuvent en effet être générés par la chaleur produite par l'utilisation de ces machines sur la surface du bois. Les principaux objectifs de cette thèse sont les suivants: (1) quantifier HAP qui sont présents dans les poussières générées lors de diverses opérations courantes effectuées sur différents bois (2) quantifier l'exposition individuelle aux poussières de bois et aux HAP chez les travailleurs, et (3) évaluer les effets génotoxiques (dommages au niveau de l'ADN et des chromosomes) due à l'exposition aux poussières de bois et aux HAP. Cette thèse est composée par une étude en laboratoire (objectif 1) et par une étude de terrain (objectifs 2 et 3). Pour l'étude en laboratoire, nous avons collecté des poussières de différents type de bois (sapin, MDF, hêtre, sipo, chêne, bois mélaminé) générées au cours de différentes opérations (comme le ponçage et le sciage), et ceci dans une chambre expérimentale et dans des conditions contrôlées. Ensuite, pour l'étude de terrain, nous avons suivi, dans le cadre de leur activité professionnelle, 31 travailleurs de sexe masculin (travailleurs du bois et ébenistes) exposés aux poussières de bois pendant deux jours de travail consécutifs. Nous avons également recruté, comme groupe de contrôle, 19 travailleurs non exposés. Pour effectuer une biosurveillance, nous avons collecté des échantillons de sang et des échantillons de cellules nasales et buccales pour chacun des participants. Ces derniers ont également rempli un questionnaire comprenant des données démographiques, ainsi que sur leur style de vie et sur leur exposition professionnelle. Pour les travailleurs du bois, un échantillonnage individuel de poussière a été effectué sur chaque sujet à l'aide d'une cassette fermée, puis nous avons évalué leur exposition à la poussière de bois et aux HAP, respectivement par mesure gravimétrique et par Chromatographie en phase gazeuse combinée à la spectrométrie de masse. L'évaluation des dommages induits à l'ADN et aux chromosomes (génotoxicité) a été, elle, effectuée à l'aide du test des micronoyaux (MN) sur les cellules nasales et buccales et à l'aide du test des comètes sur les échantillons de sang. Nos résultats montrent dans la poussière de la totalité des 6 types de bois étudiés la présence de HAP (dont certains sont cancérogènes). Des différences notoires dans les concentrations ont été néanmoins constatées en fonction du matériau étudié : les concentrations allant de 0,24 ppm pour la poussière de MDF à 7.95 ppm pour le mélaminé. Nos résultats montrent également que les travailleurs ont été exposés individuellement à de faibles concentrations de HAP (de 37,5 à 119,8 ng m-3) durant les opérations de travail du bois, alors que les concentrations de poussières inhalables étaient relativement élevés (moyenne géométrique de 2,8 mg m-3). En ce qui concerne la génotoxicité, les travailleurs exposés à la poussière de bois présentent une fréquence significativement plus élevée en MN dans les cellules nasales et buccales que les travailleurs du groupe témoin : un odds ratio de 3.1 a été obtenu pour les cellules nasales (IC 95% : de 1.8 à 5.1) et un odds ratio de 1,8 pour les cellules buccales (IC 95% : de 1.3 à 2.4). En outre, le test des comètes a montré que les travailleurs qui ont déclaré être exposés aux poussières de MDF et/ou de mélaminé avaient des dommages à l'ADN significativement plus élevés que les deux travailleurs exposés à la poussière de bois naturel (sapin, épicéa, hêtre, chêne) et que les travailleurs du groupe témoin (p <.01). Enfin, la fréquence des MN dans les cellules nasales et buccales augmentent avec les années d'exposition aux poussières de bois. Par contre, il n'y a pas de relation dose-réponse concernant la génotoxicité due à l'exposition journalière à la poussière et aux HAP. Cette étude montre qu'une exposition aux HAP eu bien lieu lors des opérations de travail du bois. Les travailleurs exposés aux poussières de bois, et donc aux HAP, courent un risque plus élevé (génotoxicité) par rapport au groupe témoin. Étant donné que certains des HAP détectés sont reconnus potentiellement cancérogènes, il est envisageable que les HAP générés au cours du travail sur les matériaux de bois sont un des agents responsables de la génotoxicité de la poussière de bois et du risque élevé de SNC observé chez les travailleurs du secteur. Etant donné la corrélation entre augmentation de la fréquence des MN, le test des micronoyaux dans les cellules nasales et buccales constitue sans conteste un futur outil pour la biosurveillance et pour la détection précoce du risque de SNC chez les travailleurs. - Exposures to wood dust have been associated with an elevated risk of adenocarcinomas of the Dasal cavity and the paranasal sinuses (sinonasal cancer or SNC) among wood workers. Wood dust is recognized as a human carcinogen by the International Agency for Research on Cancer. However, the specific cancer causative agent(s) and the mechanism(s) behind wood dust related carcinogenesis remains unknown. One possible explanation is a co-exposure to wood dust and polycyclic aromatic hydrocarbons (PAH), the latter being carcinogenic. In addition, wood workers are not only exposed to natural wood but also to wood finishes and composite woods such as wood melamine and medium density fiber (MDF) boards during the manipulation with power tools. The heat produced by the use of power tools can cause the generation of PAH from wood materials. The main objectives of the present thesis are to: (1) quantify possible PAH concentrations in wood dust generated during various common woodworking operations using different wood materials; (2) quantify personal wood dust concentrations and PAH exposures among wood workers; and (3) assess genotoxic effects (i.e., DNA and chromosomal damage) of wood dust and PAH exposure in wood workers. This thesis is composed by a laboratory study (objective 1) and a field study (objectives 2 and 3). In the laboratory study we collected wood dust from different wood materials (fir, MDF, beech, mahagany, oak, and wood melamine) generated during different wood operations (e.g., sanding and sawing) in an experimental chamber under controlled conditions. In the following field study, we monitored 31 male wood workers (furniture and construction workers) exposed to wood dust during their professional activity for two consecutive work shifts. Additionally, we recruited 19 non exposed workers as a control group. We collected from each participant blood samples, and nasal and buccal cell samples. They answered a questionnaire including demographic and life-style data and occupational exposure (current and past). Personal wood dust samples were collected using a closed-face cassette. We used gravimetrie analysis to determine the personal wood dust concentrations and capillary gas chromatography - mass spectrometry analysis to determine PAH concentrations. Genotoxicity was assessed with the micronucleus (MN) assay for nasal and buccal cells and with the comet assay for blood samples. Our results show that PAH (some of them carcinogenic) were present in dust from all six wood materials tested, yet at different concentrations depending on the material. The highest concentration was found in dust from wood melamine (7.95 ppm) and the lowest in MDF (0.24 ppm). Our results also show that workers were individually exposed to low concentrations of PAHs (37.5-119.8 ng m"3) during wood working operations, whereas the concentrations of inhalable dust were relatively high (geometric mean 2.8 mg m"3). Concerning the genotoxicity, wood workers had a significantly higher MN frequency in nasal and buccal cells than the workers in the control group (odds ratio for nasal cells 3.1 (95%CI 1.8-5.1) and buccal cells 1.8 (95%CI 1.3-2.4)). Furthermore, the comet assay showed that workers who reported to be exposed to dust from wooden boards (MDF and wood melamine) had significantly higher DNA damage than both the workers exposed to natural woods (fir, spruce, beech, oak) and the workers in the control group (p < 0.01). Finally, MN frequency in nasal and buccal cells increased with increasing years of exposure to wood dust. However, there was no genotoxic dose-response relationship with the per present day wood dust and PAH exposure. This study shows that PAH exposure occurred during wood working operations. Workers exposed to wood dust, and thus to PAH, had a higher risk for genotoxicity compared to the control group. Since some of the detected PAH are potentially carcinogenic, PAH generated from operations on wood materials may be one of the causative agents for the observed increased genotoxicity in wood workers. Since increased genotoxicity is manifested in an increased MN frequency, the MN assay in nasal and buccal cells may become a relevant biomonitoring tool in the future for early detection of SNC risk.
Resumo:
New products available for food creations include a wide variety of "supposed" food grade aerosol sprays. However, the gas propellants used cannot be considered as safe. The different legislations available did not rule any maximum residue limits, even though these compounds have some limits when used for other food purposes. This study shows a preliminary monitoring of propane, butane and dimethyl ether residues, in cakes and chocolate after spraying, when these gases are used as propellants in food aerosol sprays. Release kinetics of propane, butane and dimethyl ether were measured over one day with sprayed food, left at room temperature or in the fridge after spraying. The alkanes and dimethyl ether analyses were performed by headspace-gas chromatography-mass spectrometry/thermal conductivity detection, using monodeuterated propane and butane generated in situ as internal standards. According to the obtained results and regardingthe extrapolations of the maximum residue limits existing for these substances, different delays should be respected according to the storage conditions and the gas propellant to consume safely the sprayed food.
Resumo:
The aim of this study was to evaluate the reliability of insect larvae as samples for toxicological investigations. For this purpose, larvae of Lucilia sericata were reared on samples of minced pig liver treated with different concentrations of codeine: therapeutic, toxic, and potentially lethal doses. Codeine was detected in all tested larvae, confirming the reliability of these specimens for qualitative toxicology analysis. Furthermore, concentrations measured in larvae were correlated with levels in liver tissue. These observations bring new elements regarding the potential use of opiates concentrations in larvae for estimation of drug levels in human tissues. Morphine and norcodeine, two codeine metabolites, have been also detected at different concentrations depending on the concentration of codeine in pig liver and depending on the substance itself. The effects of codeine on the development of L. sericata were also investigated. Results showed that a 29-h interval bias on the evaluation of the larval stage duration calculated from the larvae weight has to be considered if codeine was present in the larvae substrate. Similarly, a 21-h interval bias on the total duration of development, from egg to imago, has to be considered if codeine was present in the larvae substrate.
Resumo:
Postmortem imaging consists in the non-invasive examination of bodies using medical imaging techniques. However, gas volume quantification and the interpretation of the gas collection results from cadavers remain difficult. We used whole-body postmortem multi-detector computed tomography (MDCT) followed by a full autopsy or external examination to detect the gaseous volumes in bodies. Gases were sampled from cardiac cavities, and the sample compositions were analyzed by headspace gas chromatography-mass spectrometry/thermal conductivity detection (HS-GC-MS/TCD). Three categories were defined according to the presumed origin of the gas: alteration/putrefaction, high-magnitude vital gas embolism (e.g., from scuba diving accident) and gas embolism of lower magnitude (e.g., following a traumatic injury). Cadaveric alteration gas was diagnosed even if only one gas from among hydrogen, hydrogen sulfide or methane was detected. In alteration cases, the carbon dioxide/nitrogen ratio was often >0.2, except in the case of advanced alteration, when methane presence was the best indicator. In the gas embolism cases (vital or not), hydrogen, hydrogen sulfide and methane were absent. Moreover, with high-magnitude vital gas embolisms, carbon dioxide content was >20%, and the carbon dioxide/nitrogen ratio was >0.2. With gas embolisms of lower magnitude (gas presence consecutive to a traumatic injury), carbon dioxide content was <20% and the carbon dioxide/nitrogen ratio was often <0.2. We found that gas analysis provided useful assistance to the postmortem imaging diagnosis of causes of death. Based on the quantifications of gaseous cardiac samples, reliable indicators were determined to document causes of death. MDCT examination of the body must be performed as quickly as possible, as does gas sampling, to avoid generating any artifactual alteration gases. Because of cardiac gas composition analysis, it is possible to distinguish alteration gases and gas embolisms of different magnitudes.
Resumo:
CONTEXT: Complex steroid disorders such as P450 oxidoreductase deficiency or apparent cortisone reductase deficiency may be recognized by steroid profiling using chromatographic mass spectrometric methods. These methods are highly specific and sensitive, and provide a complete spectrum of steroid metabolites in a single measurement of one sample which makes them superior to immunoassays. The steroid metabolome during the fetal-neonatal transition is characterized by (a) the metabolites of the fetal-placental unit at birth, (b) the fetal adrenal androgens until its involution 3-6 months postnatally, and (c) the steroid metabolites produced by the developing endocrine organs. All these developmental events change the steroid metabolome in an age- and sex-dependent manner during the first year of life. OBJECTIVE: The aim of this study was to provide normative values for the urinary steroid metabolome of healthy newborns at short time intervals in the first year of life. METHODS: We conducted a prospective, longitudinal study to measure 67 urinary steroid metabolites in 21 male and 22 female term healthy newborn infants at 13 time-points from week 1 to week 49 of life. Urine samples were collected from newborn infants before discharge from hospital and from healthy infants at home. Steroid metabolites were measured by gas chromatography-mass spectrometry (GC-MS) and steroid concentrations corrected for urinary creatinine excretion were calculated. RESULTS: 61 steroids showed age and 15 steroids sex specificity. Highest urinary steroid concentrations were found in both sexes for progesterone derivatives, in particular 20α-DH-5α-DH-progesterone, and for highly polar 6α-hydroxylated glucocorticoids. The steroids peaked at week 3 and decreased by ∼80% at week 25 in both sexes. The decline of progestins, androgens and estrogens was more pronounced than of glucocorticoids whereas the excretion of corticosterone and its metabolites and of mineralocorticoids remained constant during the first year of life. CONCLUSION: The urinary steroid profile changes dramatically during the first year of life and correlates with the physiologic developmental changes during the fetal-neonatal transition. Thus detailed normative data during this time period permit the use of steroid profiling as a powerful diagnostic tool.