190 resultados para CEREBRAL HEMODYNAMICS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined the electromyographic, cerebral and muscle hemodynamic responses during intermittent isometric contractions of biceps brachii at 20, 40, and 60% of maximal voluntary contraction (MVC). Eleven volunteers completed 2 min of intermittent isometric contractions (12/min) at an elbow angle of 90° interspersed with 3 min rest between intensities in systematic order. Surface electromyography (EMG) was recorded from the right biceps brachii and near infrared spectroscopy (NIRS) was used to simultaneously measure left prefrontal and right biceps brachii oxyhemoglobin (HbO2), deoxyhemoglobin (HHb), and total hemoglobin (Hbtot). Transcranial Doppler ultrasound was used to measure middle cerebral artery velocity (MCAv) bilaterally. Finger photoplethysmography was used to record beat-to-beat blood pressure and heart rate. EMG increased with force output from 20 to 60% MVC (P < 0.05). Cerebral HbO2 and Hbtot increased while HHb decreased during contractions with differences observed between 60% vs. 40% and 20% MVC (P < 0.05). Muscle HbO2 decreased while HHb increased during contractions with differences being observed among intensities (P < 0.05). Muscle Hbtot increased from rest at 20% MVC (P < 0.05), while no further change was observed at 40 and 60% MVC (P > 0.05). MCAv increased from rest to exercise but was not different among intensities (P > 0.05). Force output correlated with the root mean square EMG and changes in muscle HbO2 (P < 0.05), but not changes in cerebral HbO2 (P > 0.05) at all three intensities. Force output declined by 8% from the 1st to the 24th contraction only at 60% MVC and was accompanied by systematic increases in RMS, cerebral HbO2 and Hbtot with a leveling off in muscle HbO2 and Hbtot. These changes were independent of alterations in mean arterial pressure. Since cerebral blood flow and oxygenation were elevated at 60% MVC, we attribute the development of fatigue to reduced muscle oxygen availability rather than impaired central neuronal activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectif : Le syndrome de vasoconstriction cérébrale réversible (SVCR) est une entité clinico-radiologique associant des céphalées paroxystiques à un vasospasme uni- ou multifocal réversible des artères cérébrales avec ou sans déficit neurologique transitoire ou crise comitiale. Le but de notre étude est de rechercher les facteurs de mauvais pronostic des patients présentant un SVCR. Méthode : Nous avons réalisé une étude rétrospective des imageries vasculaires cérébrales invasives et non invasives entre janvier 2006 et 2011 et avons retenu 10 patients présentant les critères du RCVS. Les données démographiques, facteurs de risque vasculaires ainsi que l'évolution de chaque patient ont été noté. Résultats : Sept des 10 patients sont des femmes, avec un âge médian de 46 ans. Quatre patients ne présentaient pas de facteur étiologique, deux femmes se trouvaient en période post-partum (entre la première et la troisième semaine) et les trois autres cas sont induits par des drogues vaso-actives (cannabis pour 2 cas dont un associé à la cyclosporine, sumatriptan pour un cas). La durée moyenne du suivi est de 10,2 mois (0¬28 mois). Deux patients ont présentés une séquelle neurologique : un a gardé des troubles phasiques et l'autre une hémianopsie latérale homonyme. Deux autres patients sont décédés dans les suites, ce qui est inhabituel. Nous n'avons pas trouvé de corrélation d'évolution différente entre les cas de SVCR primaire ou secondaire. Les seules facteurs corrélaient à l'évolution clinique sont le status neurologique à l'admission et la présence de lésion parenchymateuse (ischémie ou hématome) à l'imagerie. Conclusion : La vasoconstriction cérébrale réversible impliquant des déficits neurologiques ou la mort a été, rarement, rapportée. Nous devons garder à l'esprit qu'une telle évolution peut survenir notamment pour les cas présentant un état neurologique dégradé à l'admission ou présentant des lésions parenchymateuses à l'imagerie.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the late 19th century, it was already known that severe infections could be associated with cardiovascular collapse, a fact essentially attributed to cardiac failure. A major experimental work in the rabbit, published by Romberg and Pässler in 1899, shifted attention to disturbed peripheral vascular tone as the mechanism of hypotension in these conditions. In the first half of the 20th century, great progresses were made in the pathophysiologic understanding of hemorrhagic and traumatic shocks, while researchers devoted relatively little attention to septic shock. Progress in the hemodynamic understanding of septic shock resumed with the advent of critical care units. The hyperdynamic state was recognized in the late fifties and early sixties. The present short review ends with landmark studies by Max Harry Weil, demonstrating the importance of venous pooling, and John H. Siegel, which introduced the concept of deficient peripheral utilization of oxygen, inspiring later work on the microvascular disturbances of septic shock.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Knowledge of cerebral blood flow (CBF) alterations in cases of acute stroke could be valuable in the early management of these cases. Among imaging techniques affording evaluation of cerebral perfusion, perfusion CT studies involve sequential acquisition of cerebral CT sections obtained in an axial mode during the IV administration of iodinated contrast material. They are thus very easy to perform in emergency settings. Perfusion CT values of CBF have proved to be accurate in animals, and perfusion CT affords plausible values in humans. The purpose of this study was to validate perfusion CT studies of CBF by comparison with the results provided by stable xenon CT, which have been reported to be accurate, and to evaluate acquisition and processing modalities of CT data, notably the possible deconvolution methods and the selection of the reference artery. METHODS: Twelve stable xenon CT and perfusion CT cerebral examinations were performed within an interval of a few minutes in patients with various cerebrovascular diseases. CBF maps were obtained from perfusion CT data by deconvolution using singular value decomposition and least mean square methods. The CBF were compared with the stable xenon CT results in multiple regions of interest through linear regression analysis and bilateral t tests for matched variables. RESULTS: Linear regression analysis showed good correlation between perfusion CT and stable xenon CT CBF values (singular value decomposition method: R(2) = 0.79, slope = 0.87; least mean square method: R(2) = 0.67, slope = 0.83). Bilateral t tests for matched variables did not identify a significant difference between the two imaging methods (P >.1). Both deconvolution methods were equivalent (P >.1). The choice of the reference artery is a major concern and has a strong influence on the final perfusion CT CBF map. CONCLUSION: Perfusion CT studies of CBF achieved with adequate acquisition parameters and processing lead to accurate and reliable results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of depressed neonatal cerebral oxidative phosphorylation for diagnosing the severity of perinatal asphyxia was estimated by correlating the concentrations of phosphocreatine (PCr) and ATP as determined by magnetic resonance spectroscopy with the degree of hypoxic-ischemic encephalopathy (HIE) in 23 asphyxiated term neonates. Ten healthy age-matched neonates served as controls. In patients, the mean concentrations +/- SD of PCr and ATP were 0.99 +/- 0.46 mmol/L (1.6 +/- 0.2 mmol/L) and 0.99 +/- 0.35 mmol/L (1.7 +/- 0.2 mmol/L), respectively (normal values in parentheses). [PCr] and [ATP] correlated significantly with the severity of HIE (r = 0.85 and 0.9, respectively, p < 0.001), indicating that the neonatal encephalopathy is the clinical manifestation of a marred brain energy metabolism. Neurodevelopmental outcome was evaluated in 21 children at 3, 9, and 18 mo. Seven infants had multiple impairments, five were moderately handicapped, five had only mild symptoms, and four were normal. There was a significant correlation between the cerebral concentrations of PCr or ATP at birth and outcome (r = 0.8, p < 0.001) and between the degree of neonatal neurologic depression and outcome (r = 0.7). More important, the outcome of neonates with moderate HIE could better be predicted with information from quantitative 31P magnetic resonance spectroscopy than from neurologic examinations. In general, the accuracy of outcome predictability could significantly be increased by adding results from 31P magnetic resonance spectroscopy to the neonatal neurologic score, but not vice versa. No correlation with outcome was found for other perinatal risk factors, including Apgar score.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: The purpose of this study was to analyze whether fever control attenuates cerebral metabolic distress after aneurysmal subarachnoid hemorrhage (SAH). METHODS: Eighteen SAH patients, who underwent intracranial pressure (ICP) and cerebral microdialysis monitoring and were treated with induced normothermia for refractory fever (body temperature >or=38.3 degrees C, despite antipyretics), were studied. Levels of microdialysate lactate/pyruvate ratio (LPR) and episodes of cerebral metabolic crisis (LPR >40) were analyzed during fever and induced normothermia, at normal and high ICP (>20 mm Hg). RESULTS: Compared to fever, induced normothermia resulted in lower LPR (40+/-24 versus 32+/-9, P<0.01) and a reduced incidence of cerebral metabolic crisis (13% versus 5%, P<0.05) at normal ICP. During episodes of high ICP, induced normothermia was associated with a similar reduction of LPR, fewer episodes of cerebral metabolic crisis (37% versus 8%, P<0.01), and lower ICP (32+/-11 versus 28+/-12 mm Hg, P<0.05). CONCLUSIONS: Fever control is associated with reduced cerebral metabolic distress in patients with SAH, irrespective of ICP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Transcranial Doppler (TCD) is widely used to monitor the temporal course of vasospasm after subarachnoid hemorrhage (SAH), but its ability to predict clinical deterioration or infarction from delayed cerebral ischemia (DCI) remains controversial. We sought to determine the prognostic utility of serial TCD examination after SAH. METHODS: We analyzed 1877 TCD examinations in 441 aneurysmal SAH patients within 14 days of onset. The highest mean blood flow velocity (mBFV) value in any vessel before DCI onset was recorded. DCI was defined as clinical deterioration or computed tomographic evidence of infarction caused by vasospasm, with adjudication by consensus of the study team. Logistic regression was used to calculate adjusted odds ratios for DCI risk after controlling for other risk factors. RESULTS: DCI occurred in 21% of patients (n = 92). Multivariate predictors of DCI included modified Fisher computed tomographic score (P = 0.001), poor clinical grade (P = 0.04), and female sex (P = 0.008). After controlling for these variables, all TCD mBFV thresholds between 120 and 180 cm/s added a modest degree of incremental predictive value for DCI at nearly all time points, with maximal sensitivity by SAH day 8. However, the sensitivity of any mBFV more than 120 cm/s for subsequent DCI was only 63%, with a positive predictive value of 22% among patients with Hunt and Hess grades I to III and 36% in patients with Hunt and Hess grades IV and V. Positive predictive value was only slightly higher if mBFV exceeded 180 cm/s. CONCLUSION: Increased TCD flow velocities imply only a mild incremental risk of DCI after SAH, with maximal sensitivity by day 8. Nearly 40% of patients with DCI never attained an mBFV more than 120 cm/s during the course of monitoring. Given the poor overall sensitivity of TCD, improved methods for identifying patients at high risk for DCI after SAH are needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monocarboxylate transporters (MCTs) are essential for the use of lactate, an energy substrate known to be overproduced in brain during an ischemic episode. The expression of MCT1 and MCT2 was investigated at 48 h of reperfusion from focal ischemia induced by unilateral extradural compression in Wistar rats. Increased MCT1 mRNA expression was detected in the injured cortex and hippocampus of compressed animals compared to sham controls. In the contralateral, uncompressed hemisphere, increases in MCT1 mRNA level in the cortex and MCT2 mRNA level in the hippocampus were noted. Interestingly, strong MCT1 and MCT2 protein expression was found in peri-lesional macrophages/microglia and in an isolectin B4+/S100beta+ cell population in the corpus callosum. In vitro, MCT1 and MCT2 protein expression was observed in the N11 microglial cell line, whereas an enhancement of MCT1 expression by tumor necrosis factor-alpha (TNF-alpha) was shown in these cells. Modulation of MCT expression in microglia suggests that these transporters may help sustain microglial functions during recovery from focal brain ischemia. Overall, our study indicates that changes in MCT expression around and also away from the ischemic area, both at the mRNA and protein levels, are a part of the metabolic adaptations taking place in the brain after ischemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Lactate protects mice against the ischaemic damage resulting from transient middle cerebral artery occlusion (MCAO) when administered intracerebroventricularly at reperfusion, yielding smaller lesion sizes and a better neurological outcome 48 h after ischaemia. We have now tested whether the beneficial effect of lactate is long-lasting and if lactate can be administered intravenously. METHODS: Male ICR-CD1 mice were subjected to 15-min suture MCAO under xylazine + ketamine anaesthesia. Na L-lactate (2 µl of 100 mmol/l) or vehicle was administered intracerebroventricularly at reperfusion. The neurological deficit was evaluated using a composite deficit score based on the neurological score, the rotarod test and the beam walking test. Mice were sacrificed at 14 days. In a second set of experiments, Na L-lactate (1 µmol/g body weight) was administered intravenously into the tail vein at reperfusion. The neurological deficit and the lesion volume were measured at 48 h. RESULTS: Intracerebroventricularly injected lactate induced sustained neuroprotection shown by smaller neurological deficits at 7 days (median = 0, min = 0, max = 3, n = 7 vs. median = 2, min = 1, max = 4.5, n = 5, p < 0.05) and 14 days after ischaemia (median = 0, min = 0, max = 3, n = 7 vs. median = 3, min = 0.5, max = 3, n = 7, p = 0.05). Reduced tissue damage was demonstrated by attenuated hemispheric atrophy at 14 days (1.3 ± 4.0 mm(3), n = 7 vs. 12.1 ± 3.8 mm(3), n = 5, p < 0.05) in lactate-treated animals. Systemic intravenous lactate administration was also neuroprotective and attenuated the deficit (median = 1, min = 0, max = 2.5, n = 12) compared to vehicle treatment (median = 1.5, min = 1, max = 8, n = 12, p < 0.05) as well as the lesion volume at 48 h (13.7 ± 12.2 mm(3), n = 12 vs. 29.6 ± 25.4 mm(3), n = 12, p < 0.05). CONCLUSIONS: The beneficial effect of lactate is long-lasting: lactate protects the mouse brain against ischaemic damage when supplied intracerebroventricularly during reperfusion with behavioural and histological benefits persisting 2 weeks after ischaemia. Importantly, lactate also protects after systemic intravenous administration, a more suitable route of administration in a clinical emergency setting. These findings provide further steps to bring this physiological, commonly available and inexpensive neuroprotectant closer to clinical translation for stroke.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

D-JNKI1, a cell-permeable peptide inhibitor of the c-Jun N-terminal kinase (JNK) pathway, has been shown to be a powerful neuroprotective agent after focal cerebral ischemia in adult mice and young rats. We have investigated the potential neuroprotective effect of D-JNKI1 and the involvement of the JNK pathway in a neonatal rat model of cerebral hypoxia-ischemia. Seven-day-old rats underwent a permanent ligation of the right common carotid artery followed by 2h of hypoxia (8% oxygen). Treatment with D-JNKI1 (0.3mg/kg intraperitoneally) significantly reduced early calpain activation, late caspase-3 activation and, in the thalamus, autophagosome formation, indicating an involvement of JNK in different types of cell death: necrotic, apoptotic and autophagic. However the size of the lesion was unchanged. Further analysis showed that neonatal hypoxia-ischemia induced an immediate decrease in JNK phosphorylation (reflecting mainly P-JNK1) followed by a slow progressive increase (including P-JNK3 54kDa), whereas c-jun and c-fos expression were both strongly activated immediately after hypoxia-ischemia. In conclusion, unlike in adult ischemic models, JNK is only moderately activated after severe cerebral hypoxia-ischemia in neonatal rats and the observed positive effects of D-JNKI1 are insufficient to give neuroprotection. Thus, for perinatal asphyxia, D-JNKI1 can only be considered in association with other therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECT: In 1999 we reported that 94% of unruptured middle cerebral artery (MCA) aneurysms managed prospectively between 1993 and 1997, according to a protocol favoring endovascular coiling, were best treated by surgical clipping. The goal of the current study was to delineate the most appropriate treatment option for unruptured MCA aneurysms today, considering the technical advances in imaging and in endovascular treatment. METHODS: 35 consecutive patients harboring 40 unruptured MCA aneurysms were treated between 1997 and December 2000. Patients with unruptured cerebral aneurysms are managed prospectively according to the same protocol as reported previously [1]: the primary treatment recommendation is endovascular packing with Guglielmi detachable coils (GDCs). Surgical clipping is recommended after failed attempt at coil placement or in the presence of angioanatomical features that contraindicate that type of endovascular therapy. RESULTS: One unruptured MCA aneurysm was treated by endovascular embolization, 37 unruptured MCA aneurysms were clipped, whereas 2 unruptured MCA aneurysms were trapped with simultaneous extracranial-intracranial revascularization. Postoperative angiography revealed complete exclusion of all aneurysms. Preservation of vascular permeability was demonstrated in all clip-reconstructed aneurysms, despite arterial branches frequently originating from the aneurysmal base. Cerebral revascularization of the distal MCA was successful in the 2 patients with giant aneurysms. None of the patients presented permanent disabling complications from the treatment of the unruptured MCA aneurysm. CONCLUSION: Despite major technical advances in imaging and in endovascular treatment of cerebral aneurysms, surgical clipping still is the most efficient treatment for unruptured MCA aneurysms at the beginning of the new millennium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The Richalet hypoxia sensitivity test (RT), which quantifies the cardiorespiratory response to acute hypoxia during exercise at an intensity corresponding to a heart rate of ~130 bpm in normoxia, can predict susceptibility of altitude sickness. Its ability to predict exercise performance in hypoxia is unknown. OBJECTIVES: Investigate: (1) whether cerebral blood flow (CBF) and cerebral tissue oxygenation (O2Hb; oxygenated hemoglobin, HHb; deoxygenated hemoglobin) responses during RT predict time-trial cycling (TT) performance in severe hypoxia; (2) if subjects with blunted cardiorespiratory responses during RT show greater impairment of TT performance in severe hypoxia. STUDY DESIGN: Thirteen men [27 ± 7 years (mean ± SD), Wmax: 385 ± 30 W] were evaluated with RT and the results related to two 15 km TT, in normoxia and severe hypoxia (FIO2 = 0.11). RESULTS: During RT, mean middle cerebral artery blood velocity (MCAv: index of CBF) was unaltered with hypoxia at rest (p > 0.05), while it was increased during normoxic (+22 ± 12 %, p < 0.05) and hypoxic exercise (+33 ± 17 %, p < 0.05). Resting hypoxia lowered cerebral O2Hb by 2.2 ± 1.2 μmol (p < 0.05 vs. resting normoxia); hypoxic exercise further lowered it to -7.6 ± 3.1 μmol below baseline (p < 0.05). Cerebral HHb, increased by 3.5 ± 1.8 μmol in resting hypoxia (p < 0.05), and further to 8.5 ± 2.9 μmol in hypoxic exercise (p < 0.05). Changes in CBF and cerebral tissue oxygenation during RT did not correlate with TT performance loss (R = 0.4, p > 0.05 and R = 0.5, p > 0.05, respectively), while tissue oxygenation and SaO2 changes during TT did (R = -0.76, p < 0.05). Significant correlations were observed between SaO2, MCAv and HHb during RT (R = -0.77, -0.76 and 0.84 respectively, p < 0.05 in all cases). CONCLUSIONS: CBF and cerebral tissue oxygenation changes during RT do not predict performance impairment in hypoxia. Since the changes in SaO2 and brain HHb during the TT correlated with performance impairment, the hypothesis that brain oxygenation plays a limiting role for global exercise in conditions of severe hypoxia remains to be tested further.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypoxia increases the ventilatory response to exercise, which leads to hyperventilation-induced hypocapnia and subsequent reduction in cerebral blood flow (CBF). We studied the effects of adding CO2 to a hypoxic inspired gas on CBF during heavy exercise in an altitude naïve population. We hypothesized that augmented inspired CO2 and hypoxia would exert synergistic effects on increasing CBF during exercise, which would improve exercise capacity compared to hypocapnic hypoxia. We also examined the responsiveness of CO2 and O2 chemoreception on the regulation ventilation (E) during incremental exercise. We measured middle cerebral artery velocity (MCAv; index of CBF), E, end-tidal PCO2, respiratory compensation threshold (RC) and ventilatory response to exercise (E slope) in ten healthy men during incremental cycling to exhaustion in normoxia and hypoxia (FIO2 = 0.10) with and without augmenting the fraction of inspired CO2 (FICO2). During exercise in normoxia, augmenting FICO2 elevated MCAv throughout exercise and lowered both RC onset andE slope below RC (P<0.05). In hypoxia, MCAv and E slope below RC during exercise were elevated, while the onset of RC occurred at lower exercise intensity (P<0.05). Augmenting FICO2 in hypoxia increased E at RC (P<0.05) but no difference was observed in RC onset, MCAv, or E slope below RC (P>0.05). The E slope above RC was unchanged with either hypoxia or augmented FICO2 (P>0.05). We found augmenting FICO2 increased CBF during sub-maximal exercise in normoxia, but not in hypoxia, indicating that the 'normal' cerebrovascular response to hypercapnia is blunted during exercise in hypoxia, possibly due to an exhaustion of cerebral vasodilatory reserve. This finding may explain the lack of improvement of exercise capacity in hypoxia with augmented CO2. Our data further indicate that, during exercise below RC, chemoreception is responsive, while above RC the ventilatory response to CO2 is blunted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Normobaric oxygen therapy is frequently applied in neurocritical care, however, whether supplemental FiO2 has beneficial cerebral effects is still controversial. We examined in patients with severe traumatic brain injury (TBI) the effect of incremental FiO2 on cerebral excitotoxicity, quantified by cerebral microdialysis (CMD) glutamate. METHODS: This was a retrospective analysis of a database of severe TBI patients monitored with CMD and brain tissue oxygen (PbtO2). The relationship of FiO2-categorized into four separate ranges (<40, 41-60, 61-80, and >80 %)-with CMD glutamate was examined using ANOVA with Tukey's post hoc test. RESULTS: A total of 1,130 CMD samples from 36 patients-monitored for a median of 4 days-were examined. After adjusting for brain (PbtO2, intracranial pressure, cerebral perfusion pressure, lactate/pyruvate ratio, Marshall CT score) and systemic (PaCO2, PaO2, hemoglobin, APACHE score) covariates, high FiO2 was associated with a progressive increase in CMD glutamate [8.8 (95 % confidence interval 7.4-10.2) µmol/L at FiO2 < 40 % vs. 12.8 (10.9-14.7) µmol/L at 41-60 % FiO2, 19.3 (15.6-23) µmol/L at 61-80 % FiO2, and 22.6 (16.7-28.5) µmol/L at FiO2 > 80 %; multivariate-adjusted p < 0.05]. The threshold of FiO2-related increase in CMD glutamate was lower for samples with normal versus low PbtO2 < 20 mmHg (FiO2 > 40 % vs. FiO2 > 60 %). Hyperoxia (PaO2 > 150 mmHg) was also associated with increased CMD glutamate (adjusted p < 0.001). CONCLUSIONS: Incremental normobaric FiO2 levels were associated with increased cerebral excitotoxicity in patients with severe TBI, independent from PbtO2 and other important cerebral and systemic determinants. These data suggest that supra-normal oxygen may aggravate secondary brain damage after severe TBI.