393 resultados para CD8 T cells
Resumo:
Many mechanisms have been proposed to explain why immune responses against human tumor antigens are generally ineffective. For example, tumor cells have been shown to develop active immune evasion mechanisms. Another possibility is that tumor antigens are unable to optimally stimulate tumor-specific T cells. In this study we have used HLA-A2/Melan-A peptide tetramers to directly isolate antigen-specific CD8(+) T cells from tumor-infiltrated lymph nodes. This allowed us to quantify the activation requirements of a representative polyclonal yet monospecific tumor-reactive T cell population. The results obtained from quantitative assays of intracellular Ca(2+) mobilization, TCR down-regulation, cytokine production and induction of effector cell differentiation indicate that the naturally produced Melan-A peptides are weak agonists and are clearly suboptimal for T cell activation. In contrast, optimal T cell activation was obtained by stimulation with recently defined peptide analogues. These findings provide a molecular basis for the low immunogenicity of tumor cells and suggest that patient immunization with full agonist peptide analogues may be essential for stimulation and maintenance of anti-tumor T cell responses in vivo.
Resumo:
The paradoxical coexistence of spontaneous tumor antigen-specific immune responses with progressive disease in cancer patients furthers the need to dissect the molecular pathways involved in tumor-induced T cell dysfunction. In patients with advanced melanoma, we have previously shown that the cancer-germline antigen NY-ESO-1 stimulates spontaneous NY-ESO-1-specific CD8(+) T cells that up-regulate PD-1 expression. We also observed that PD-1 regulates NY-ESO-1-specific CD8(+) T cell expansion upon chronic antigen stimulation. In the present study, we show that a fraction of PD-1(+) NY-ESO-1-specific CD8(+) T cells in patients with advanced melanoma up-regulates Tim-3 expression and that Tim-3(+)PD-1(+) NY-ESO-1-specific CD8(+) T cells are more dysfunctional than Tim-3(-)PD-1(+) and Tim-3(-)PD-1(-) NY-ESO-1-specific CD8(+) T cells, producing less IFN-γ, TNF, and IL-2. Tim-3-Tim-3L blockade enhanced cytokine production by NY-ESO-1-specific CD8(+) T cells upon short ex vivo stimulation with cognate peptide, thus enhancing their functional capacity. In addition, Tim-3-Tim-3L blockade enhanced cytokine production and proliferation of NY-ESO-1-specific CD8(+) T cells upon prolonged antigen stimulation and acted in synergy with PD-1-PD-L1 blockade. Collectively, our findings support the use of Tim-3-Tim-3L blockade together with PD-1-PD-L1 blockade to reverse tumor-induced T cell exhaustion/dysfunction in patients with advanced melanoma.
Resumo:
T cell responses to viral epitopes are often composed of a small number of codominant clonotypes. In this study, we show that tumor Ag-specific T cells can behave similarly. In a melanoma patient with a long lasting HLA-A2/NY-ESO-1-specific T cell response, reaching 10% of circulating CD8 T cells, we identified nine codominant clonotypes characterized by individual TCRs. These clonotypes made up almost the entire pool of highly differentiated effector cells, but only a fraction of the small pool of less differentiated "memory" cells, suggesting that the latter serve to maintain effector cells. The different clonotypes displayed full effector function and expressed TCRs with similar functional avidity. Nevertheless, some clonotypes increased, whereas others declined in numbers over the observation period of 6 years. One clonotype disappeared from circulating blood, but without preceding critical telomere shortening. In turn, clonotypes with increasing frequency had accelerated telomere shortening, correlating with strong in vivo proliferation. Interestingly, the final prevalence of the different T cell clonotypes in circulation was anticipated in a metastatic lymph node withdrawn 2 years earlier, suggesting in vivo clonotype selection driven by metastases. Together, these data provide novel insight in long term in vivo persistence of T cell clonotypes associated with continued cell turnover but not replicative senescence or functional alteration.
NLRC5 deficiency selectively impairs MHC class I- dependent lymphocyte killing by cytotoxic T cells.
Resumo:
Nucleotide-binding oligomerization domain-like receptors (NLRs) are intracellular proteins involved in innate-driven inflammatory responses. The function of the family member NLR caspase recruitment domain containing protein 5 (NLRC5) remains a matter of debate, particularly with respect to NF-κB activation, type I IFN, and MHC I expression. To address the role of NLRC5, we generated Nlrc5-deficient mice (Nlrc5(Δ/Δ)). In this article we show that these animals exhibit slightly decreased CD8(+) T cell percentages, a phenotype compatible with deregulated MHC I expression. Of interest, NLRC5 ablation only mildly affected MHC I expression on APCs and, accordingly, Nlrc5(Δ/Δ) macrophages efficiently primed CD8(+) T cells. In contrast, NLRC5 deficiency dramatically impaired basal expression of MHC I in T, NKT, and NK lymphocytes. NLRC5 was sufficient to induce MHC I expression in a human lymphoid cell line, requiring both caspase recruitment and LRR domains. Moreover, endogenous NLRC5 localized to the nucleus and occupied the proximal promoter region of H-2 genes. Consistent with downregulated MHC I expression, the elimination of Nlrc5(Δ/Δ) lymphocytes by cytotoxic T cells was markedly reduced and, in addition, we observed low NLRC5 expression in several murine and human lymphoid-derived tumor cell lines. Hence, loss of NLRC5 expression represents an advantage for evading CD8(+) T cell-mediated elimination by downmodulation of MHC I levels-a mechanism that may be exploited by transformed cells. Our data show that NLRC5 acts as a key transcriptional regulator of MHC I in lymphocytes and support an essential role for NLRs in directing not only innate but also adaptive immune responses.
Resumo:
Alloreactive T cells are thought to be a potentially rich source of high-avidity T cells with therapeutic potential since tolerance to self-Ags is restricted to self-MHC recognition. Given the particularly high frequency of alloreactive T cells in the peripheral immune system, we used numerous MHC class I multimers to directly visualize and isolate viral and tumor Ag-specific alloreactive CD8 T cells. In fact, all but one specificities screened were undetectable in ex vivo labeling. In this study, we report the occurrence of CD8 T cells specifically labeled with allo-HLA-A*0201/Melan-A/MART-1(26-35) multimers at frequencies that are in the range of 10(-4) CD8 T cells and are thus detectable ex vivo by flow cytometry. We report the thymic generation and shaping of tumor Ag-specific, alloreactive T cells as well as their fate once seeded in the periphery. We show that these cells resemble their counterparts in HLA-A*0201-positive individuals, based on their structural and functional attributes.
Resumo:
Vitiligo, a skin disorder characterized by the spontaneous destruction of melanocytes, is believed to be of autoimmune origin. We investigated the presence and functionality of CD8(+) T-cells specific for the melanocyte-associated antigens Melan-A, gp100, tyrosinase, and TRP-2 in the blood of HLA-A2(+) vitiligo patients. We enumerated antigen-specific CD8(+) T cells by major histocompatibility complex multimer staining directly ex vivo, as well as after 9 days of in vitro stimulation and assessed IFN-gamma secretion by enzyme-linked immunospot (Elispot) assay. Tyrosinase-, gp100-, or TRP-2-specific CD8(+) T cells could not be identified in the peripheral blood of individuals with vitiligo. Although Melan-A-specific T cells were detectable at levels comparable to Flu-MP-specific T cells by multimer staining, these lymphocytes did not express the skin-homing receptor cutaneous lymphocyte antigen, were phenotypically naïve (CD45RA(+)), and were unresponsive in the IFN-gamma Elispot assay, suggesting that they are unlikely to be involved in the etiopathogenesis of vitiligo.
Resumo:
The TCR repertoire of CD8+ T cells specific for Moloney murine leukemia virus (M-MuLV)-associated Ags has been investigated in vitro and in vivo. Analysis of a large panel of established CD8+ CTL clones specific for M-MuLV indicated an overwhelming bias for V beta4 in BALB/c mice and for V beta5.2 in C57BL/6 mice. These V beta biases were already detectable in mixed lymphocyte:tumor cell cultures established from virus-immune spleen cells. Furthermore, direct ex vivo analysis of PBL from BALB/c or C57BL/6 mice immunized with syngeneic M-MuLV-infected tumor cells revealed a dramatic increase in CD8+ cells expressing V beta4 or V beta5.2, respectively. M-MuLV-specific CD8+ cells with an activated (CD62L-) phenotype persisted in blood of immunized mice for at least 2 mo, and exhibited decreased TCR and CD8 levels compared with their naive counterparts. In C57BL/6 mice, most M-MuLV-specific CD8+ CTL clones and immune PBL coexpressed V alpha3.2 in association with V beta5.2. Moreover, these V beta5.2+ V alpha3.2+ cells were shown to recognize the recently described H-2Db-restricted epitope (CCLCLTVFL) encoded in the leader sequence of the M-MuLV gag polyprotein. Collectively, our data demonstrate a highly restricted TCR repertoire in the CD8+ T cell response to M-MuLV-associated Ags in vivo, and suggest the potential utility of flow-microfluorometric analysis of V beta and V alpha expression in the diagnosis and monitoring of viral infections.
Resumo:
Thymic negative selection renders the developing T-cell repertoire tolerant to self-major histocompatability complex (MHC)/peptide ligands. The major mechanism of induction of self-tolerance is thought to be thymic clonal deletion, ie, the induction of apoptotic cell death in thymocytes expressing a self-reactive T-cell receptor. Consistent with this hypothesis, in mice deficient in thymic clonal deletion mediated by cells of hematopoietic origin, a twofold to threefold increased generation of mature thymocytes has been observed. Here we describe the analysis of the specificity of T lymphocytes developing in the absence of clonal deletion mediated by hematopoietic cells. In vitro, targets expressing syngeneic MHC were readily lysed by activated CD8(+) T cells from deletion-deficient mice. However, proliferative responses of T cells from these mice on activation with syngeneic antigen presenting cells were rather poor. In vivo, deletion-deficient T cells were incapable of induction of lethal graft-versus-host disease in syngeneic hosts. These data indicate that in the absence of thymic deletion mediated by hematopoietic cells functional T-cell tolerance can be induced by nonhematopoietic cells in the thymus. Moreover, our results emphasize the redundancy in thymic negative selection mechanisms.
Resumo:
The current literature on the role of interleukin (IL)-2 in memory CD8(+) T-cell differentiation indicates a significant contribution of IL-2 during primary and also secondary expansion of CD8(+) T cells. IL-2 seems to be responsible for optimal expansion and generation of effector functions following primary antigenic challenge. As the magnitude of T-cell expansion determines the numbers of memory CD8(+) T cells surviving after pathogen elimination, these events influence memory cell generation. Moreover, during the contraction phase of an immune response where most antigen-specific CD8(+) T cells disappear by apoptosis, IL-2 signals are able to rescue CD8(+) T cells from cell death and provide a durable increase in memory CD8(+) T-cell counts. At the memory stage, CD8(+) T-cell frequencies can be boosted by administration of exogenous IL-2. Significantly, only CD8(+) T cells that have received IL-2 signals during initial priming are able to mediate efficient secondary expansion following renewed antigenic challenge. Thus, IL-2 signals during different phases of an immune response are key in optimizing CD8(+) T-cell functions, thereby affecting both primary and secondary responses of these T cells.
Resumo:
Central and peripheral tolerance prevent autoimmunity by deleting the most aggressive CD8(+) T cells but they spare cells that react weakly to tissue-restricted antigen (TRA). To reveal the functional characteristics of these spared cells, we generated a transgenic mouse expressing the TCR of a TRA-specific T cell that had escaped negative selection. Interestingly, the isolated TCR matches the affinity/avidity threshold for negatively selecting T cells, and when developing transgenic cells are exposed to their TRA in the thymus, only a fraction of them are eliminated but significant numbers enter the periphery. In contrast to high avidity cells, low avidity T cells persist in the antigen-positive periphery with no signs of anergy, unresponsiveness, or prior activation. Upon activation during an infection they cause autoimmunity and form memory cells. Unexpectedly, peptide ligands that are weaker in stimulating the transgenic T cells than the thymic threshold ligand also induce profound activation in the periphery. Thus, the peripheral T cell activation threshold during an infection is below that of negative selection for TRA. These results demonstrate the existence of a level of self-reactivity to TRA to which the thymus confers no protection and illustrate that organ damage can occur without genetic predisposition to autoimmunity.
Resumo:
During chronic infection, pathogen-specific CD8(+) T cells upregulate expression of molecules such as the inhibitory surface receptor PD-1, have diminished cytokine production and are thought to undergo terminal differentiation into exhausted cells. Here we found that T cells with memory-like properties were generated during chronic infection. After transfer into naive mice, these cells robustly proliferated and controlled a viral infection. The reexpanded T cell populations continued to have the exhausted phenotype they acquired during the chronic infection. Thus, the cells underwent a form of differentiation that was stably transmitted to daughter cells. We therefore propose that during persistent infection, effector T cells stably differentiate into a state that is optimized to limit viral replication without causing overwhelming immunological pathology.
Resumo:
Epstein-Barr virus (EBV) has been associated with multiple sclerosis (MS), however, most studies examining the relationship between the virus and the disease have been based on serologies, and if EBV is linked to MS, CD8+ T cells are likely to be involved as they are important both in MS pathogenesis and in controlling viruses. We hypothesized that valuable information on the link between MS and EBV would be ascertained from the study of frequency and activation levels of EBV-specific CD8+ T cells in different categories of MS patients and control subjects. We investigated EBV-specific cellular immune responses using proliferation and enzyme linked immunospot assays, and humoral immune responses by analysis of anti-EBV antibodies, in a cohort of 164 subjects, including 108 patients with different stages of MS, 35 with other neurological diseases and 21 healthy control subjects. Additionally, the cohort were all tested against cytomegalovirus (CMV), another neurotropic herpes virus not convincingly associated with MS, nor thought to be deleterious to the disease. We corrected all data for age using linear regression analysis over the total cohorts of EBV- and CMV-infected subjects. In the whole cohort, the rate of EBV and CMV infections were 99% and 51%, respectively. The frequency of IFN-gamma secreting EBV-specific CD8+ T cells in patients with clinically isolated syndrome (CIS) was significantly higher than that found in patients with relapsing-remitting MS (RR-MS), secondary-progressive MS, primary-progressive MS, patients with other neurological diseases and healthy controls. The shorter the interval between MS onset and our assays, the more intense was the EBV-specific CD8+ T-cell response. Confirming the above results, we found that EBV-specific CD8+ T-cell responses decreased in 12/13 patients with CIS followed prospectively for 1.0 +/- 0.2 years. In contrast, there was no difference between categories for EBV-specific CD4+ T cell, or for CMV-specific CD4+ and CD8+ T-cell responses. Anti-EBV-encoded nuclear antigen-1 (EBNA-1)-specific antibodies correlated with EBV-specific CD8+ T cells in patients with CIS and RR-MS. However, whereas EBV-specific CD8+ T cells were increased the most in early MS, EBNA-1-specific antibodies were increased in early as well as in progressive forms of MS. Our data show high levels of CD8+ T-cell activation against EBV--but not CMV--early in the course of MS, which support the hypothesis that EBV might be associated with the onset of this disease.
Resumo:
PURPOSE OF REVIEW: Most of the studies investigating antiviral immunity have predominantly focused on CD8 T cells. However, numerous recent studies have highlighted the importance of HIV-1-specific CD4 T cells in the antiviral immune response, and have also revealed the high level of complexity and heterogeneity of the virus-specific CD4 T-cell responses. An understanding of the role of these key players in the antiviral immune response is of fundamental importance.RECENT FINDINGS: A comprehensive investigation of several features of virus-specific CD4 T-cell responses, including the magnitude, breadth, function and phenotype, has recently been performed. In particular, HIV-1-specific CD4 T-cell responses have been studied in different stages of HIV-1 infection, i.e. acute and chronic phase, under conditions of spontaneous (long-term non-progressors) or antiviral therapy-mediated control of virus replication or uncontrolled virus replication. Different phenotypical and functional patterns of HIV-1-specific CD4 T-cell responses were associated with different conditions of controlled versus uncontrolled virus replication, thus allowing the identification of signatures of protective immune responses. Robust and diverse virus-specific CD4 T-cell responses have been observed. These responses, however, were not predictive of nonprogressive versus progressive HIV-1-associated disease.SUMMARY: There is an urgent need to delineate the immune correlates of protective T-cell responses in order to develop novel immunological markers to evaluate the degree of immune restoration of antiviral therapy as well as the potential effectiveness of HIV vaccine-induced T-cell immune responses.
Resumo:
Aim: We investigated the relationship between the magnitude of comprehensive hepatitis C virus (HCV)-specific CD8(+) T-cell responses and the clinical course of acute HCV infection. Methods: Six consecutive patients with acute HCV infection were studied. Analysis of HCV-specific CD8(+) T-cell responses was performed using an interferon-gamma-based enzyme-linked immunospot assay using peripheral CD8(+) T-cells, monocytes and 297 20-mer synthetic peptides overlapping by 10 residues and spanning the entire HCV sequence of genotype 1b. Results: Five patients presented detectable HCV-specific CD8(+) T-cell responses against a single and different peptide, whereas 1 patient showed responses against three different peptides. Neither the magnitude of HCV-specific CD8(+) T-cell responses nor the severity of hepatitis predicts the outcome of acute hepatitis. The maximum number of HCV-specific CD8(+) T-cells correlated with maximum serum alanine aminotransferase level during the course (r = 0.841, P = 0.036). Conclusions: HCV-specific CD8(+) T-cell responses were detectable in all 6 patients with acute HCV infection, and 6 novel HCV-specific CTL epitopes were identified. Acute HCV infection can resolve with detectable HCV-specific CD8(+) T-cell responses, but without development of antibody against HCV.
Resumo:
Recent studies of cancer patients revealed high diversity in oncogenic mechanisms, leading to increased treatment individualization for subgroups of patients with frequent cancers. A similar development may not be possible for patients with rare cancers, such as Merkel cell carcinoma (MCC). Finding shared disease mechanisms may open new options to understanding and treating such tumors. Tumor-infiltrating CD8+ T cells are frequently associated with favorable clinical outcome in a remarkably large spectrum of cancers. In this issue, Afanasiev et al. suggest a mechanism that may hinder the tumor homing of CD8+ T cells in MCC patients. It is possible that therapeutic mobilization of anti-cancer T cells may be useful in patients who share this specific immune biological feature.