164 resultados para B16-F10 melanoma cells
Resumo:
A recent phase 1 trial has demonstrated that the generation of tumor-reactive T lymphocytes by transfer of specific T-cell receptor (TCR) genes into autologous lymphocytes is feasible. However, compared with results obtained by infusion of tumor-infiltrating lymphocytes, the response rate observed in this first TCR gene therapy trial is low. One strategy that is likely to enhance the success rate of TCR gene therapy is the use of tumor-reactive TCRs with a higher capacity for tumor cell recognition. We therefore sought to develop standardized procedures for the selection of well-expressed, high-affinity, and safe human TCRs. Here we show that TCR surface expression can be improved by modification of TCR alpha and beta sequences and that such improvement has a marked effect on the in vivo function of TCR gene-modified T cells. From a panel of human, melanoma-reactive TCRs we subsequently selected the TCR with the highest affinity. Furthermore, a generally applicable assay was used to assess the lack of alloreactivity of this TCR against a large series of common human leukocyte antigen alleles. The procedures described in this study should be of general value for the selection of well- and stably expressed, high-affinity, and safe human TCRs for subsequent clinical testing.
Resumo:
In contrast with the low frequency of most single epitope reactive T cells in the preimmune repertoire, up to 1 of 1,000 naive CD8(+) T cells from A2(+) individuals specifically bind fluorescent A2/peptide multimers incorporating the A27L analogue of the immunodominant 26-35 peptide from the melanocyte differentiation and melanoma associated antigen Melan-A. This represents the only naive antigen-specific T cell repertoire accessible to direct analysis in humans up to date. To get insight into the molecular basis for the selection and maintenance of such an abundant repertoire, we analyzed the functional diversity of T cells composing this repertoire ex vivo at the clonal level. Surprisingly, we found a significant proportion of multimer(+) clonotypes that failed to recognize both Melan-A analogue and parental peptides in a functional assay but efficiently recognized peptides from proteins of self- or pathogen origin selected for their potential functional cross-reactivity with Melan-A. Consistent with these data, multimers incorporating some of the most frequently recognized peptides specifically stained a proportion of naive CD8(+) T cells similar to that observed with Melan-A multimers. Altogether these results indicate that the high frequency of Melan-A multimer(+) T cells can be explained by the existence of largely cross-reactive subsets of naive CD8(+) T cells displaying multiple specificities.
Resumo:
We have determined high-resolution crystal structures of the complexes of HLA-A2 molecules with two modified immunodominant peptides from the melanoma tumor-associated protein Melan-A/Melanoma Ag recognized by T cells-1. The two peptides, a decamer and nonamer with overlapping sequences (ELAGIGILTV and ALGIGILTV), are modified in the second residue to increase their affinity for HLA-A2. The modified decamer is more immunogenic than the natural peptide and a candidate for peptide-based melanoma immunotherapy. The crystal structures at 1.8 and 2.15 A resolution define the differences in binding modes of the modified peptides, including different clusters of water molecules that appear to stabilize the peptide-HLA interaction. The structures suggest both how the wild-type peptides would bind and how three categories of cytotoxic T lymphocytes with differing fine specificity might recognize the two peptides.
Resumo:
Tumor antigen-specific cytotoxic T cells (CTLs) play a major role in the adaptive immune response to cancers. This CTL response is often insufficient because of functional impairment, tumor escape mechanisms, or inhibitory tumor microenvironment. However, little is known about the fate of given tumor-specific CTL clones in cancer patients. Studies in patients with favorable outcomes may be very informative. In this longitudinal study, we tracked, quantified, and characterized functionally defined antigen-specific T-cell clones ex vivo, in peripheral blood and at tumor sites, in two long-term melanoma survivors. MAGE-A10-specific CD8+ T-cell clones with high avidity to antigenic peptide and tumor lytic capabilities persisted in peripheral blood over more than 10 years, with quantitative variations correlating with the clinical course. These clones were also found in emerging metastases, and, in one patient, circulating clonal T cells displayed a fully differentiated effector phenotype at the time of relapse. Longevity, tumor homing, differentiation phenotype, and quantitative adaptation to the disease phases suggest the contribution of the tracked tumor-reactive clones in the tumor control of these long-term metastatic survivor patients. Focusing research on patients with favorable outcomes may help to identify parameters that are crucial for an efficient antitumor response and to optimize cancer immunotherapy.
Resumo:
Invariant NKT cells (iNKT cells) recognize glycolipid Ags via an invariant TCR alpha-chain and play a central role in various immune responses. Although human CD4(+) and CD4(-) iNKT cell subsets both produce Th1 cytokines, the CD4(+) subset displays an enhanced ability to secrete Th2 cytokines and shows regulatory activity. We performed an ex vivo analysis of blood, liver, and tumor iNKT cells from patients with hepatocellular carcinoma and metastases from uveal melanoma or colon carcinoma. Frequencies of Valpha24/Vbeta11 iNKT cells were increased in tumors, especially in patients with hepatocellular carcinoma. The proportions of CD4(+), double negative, and CD8alpha(+) iNKT cell subsets in the blood of patients were similar to those of healthy donors. However, we consistently found that the proportion of CD4(+) iNKT cells increased gradually from blood to liver to tumor. Furthermore, CD4(+) iNKT cell clones generated from healthy donors were functionally distinct from their CD4(-) counterparts, exhibiting higher Th2 cytokine production and lower cytolytic activity. Thus, in the tumor microenvironment the iNKT cell repertoire is modified by the enrichment of CD4(+) iNKT cells, a subset able to generate Th2 cytokines that can inhibit the expansion of tumor Ag-specific CD8(+) T cells. Because CD4(+) iNKT cells appear inefficient in tumor defense and may even favor tumor growth and recurrence, novel iNKT-targeted therapies should restore CD4(-) iNKT cells at the tumor site and specifically induce Th1 cytokine production from all iNKT cell subsets.
Resumo:
Recent immunotherapy trials have shown that lymphodepletion induced by short-term chemotherapy favors subsequent expansion of adoptively transferred T cells, by homeostatic mechanisms. To take advantage of this effect, novel regimens are being developed with the aim to enhance tumor immunity and reduce treatment toxicity. We have designed a clinical phase I trial combining chemotherapy, reinfusion of PBMC containing Melan-A(MART-1)-specific T cells, and vaccination with Melan-A peptide in Incomplete Freund's Adjuvant. Treatment with Busulfan plus Fludarabine depleted lymphocytes only weakly. Cyclophosphamide (CTX) plus Fludarabine depleted lymphocytes more profoundly, with a maximal effect using high doses of CTX. It is interesting to note that, the degree of homeostatic T-cell proliferation correlated tightly with the extent of lymphodepletion. As compared with CD4 T cells, CD8 T cells showed higher susceptibility to chemotherapy, followed by more rapid homeostatic proliferation and recovery, resulting in strong inversions of CD4/CD8 ratios. Despite efficient homeostatic proliferation of total CD4 and CD8 T cells, the frequency of CD8 T cells specific for Melan-A and cancer-testis antigens remained relatively low. In contrast, EBV-specific T cells expanded and reached high numbers. We conclude that short-term chemotherapy promoted homeostatic lymphocyte proliferation depending on the intensity of lymphocyte depletion, however without preferential expansion of tumor antigen-specific T cells.
Resumo:
Immunotherapy of cancer is often performed with altered "analog" peptide Ags optimized for HLA class I binding, resulting in enhanced immunogenicity, but the induced T cell responses require further evaluation. Recently, we demonstrated fine specificity differences and enhanced recognition of naturally presented Ag by T cells after vaccination with natural Melan-A/MART-1 peptide, as compared with analog peptide. In this study, we compared the TCR primary structures of 1489 HLA-A*0201/Melan-A26-35-specific CD8 T cells derived from both cohorts of patients. Although a strong preference for TRAV12-2 segment usage was present in nearly all patients, usage of particular TRAJ gene segments and CDR3 composition differed slightly after vaccination with natural vs analog peptide. Moreover, TCR β-chain repertoires were broader after natural than analog peptide vaccination. In all patients, we observed a marked conservation of the CDR3β amino acid composition with recurrent sequences centered on a glycyl-leucyl/valyl/alanyl-glycyl motif. In contrast to viral-specific TCR repertoires, such "public" motifs were primarily expressed by nondominant T cell clonotypes, which contrasted with "private" CDR3β signatures frequently found in T cell clonotypes that dominated repertoires of individual patients. Interestingly, no differences in functional avidity were observed between public and private T cell clonotypes. Collectively, our data indicate that T cell repertoires generated against natural or analog Melan-A peptide exhibited slightly distinct but otherwise overlapping and structurally conserved TCR features, suggesting that the differences in binding affinity/avidity of TCRs toward pMHC observed in the two cohorts of patients are caused by subtle structural TCR variations.
Resumo:
In sentinel node (SN) biopsy, an interval SN is defined as a lymph node or group of lymph nodes located between the primary melanoma and an anatomically well-defined lymph node group directly draining the skin. As shown in previous reports, these interval SNs seem to be at the same metastatic risk as are SNs in the usual, classic areas. This study aimed to review the incidence, lymphatic anatomy, and metastatic risk of interval SNs. METHODS: SN biopsy was performed at a tertiary center by a single surgical team on a cohort of 402 consecutive patients with primary melanoma. The triple technique of localization was used-that is, lymphoscintigraphy, blue dye, and gamma-probe. Otolaryngologic melanoma and mucosal melanoma were excluded from this analysis. SNs were examined by serial sectioning and immunohistochemistry. All patients with metastatic SNs were recommended to undergo a radical selective lymph node dissection. RESULTS: The primary locations of the melanomas included the trunk (188), an upper limb (67), or a lower limb (147). Overall, 97 (24.1%) of the 402 SNs were metastatic. Interval SNs were observed in 18 patients, in all but 2 of whom classic SNs were also found. The location of the primary was truncal in 11 (61%) of the 18, upper limb in 5, and lower limb in 2. One patient with a dorsal melanoma had drainage exclusively in a cervicoscapular area that was shown on removal to contain not lymph node tissue but only a blue lymph channel without tumor cells. Apart from the interval SN, 13 patients had 1 classic SN area and 3 patients 2 classic SN areas. Of the 18 patients, 2 had at least 1 metastatic interval SN and 2 had a classic SN that was metastatic; overall, 4 (22.2%) of 18 patients were node-positive. CONCLUSION: We found that 2 of 18 interval SNs were metastatic: This study showed that preoperative lymphoscintigraphy must review all known lymphatic areas in order to exclude an interval SN.
Resumo:
The tumor Ag SSX-2 (HOM-MEL-40) was found by serological identification of Ags by recombinant expression cloning and was shown to be a cancer/testis Ag expressed in a wide variety of tumors. It may therefore represent a source of CD8(+) T cell epitopes useful for specific immunotherapy of cancer. To identify potential SSX-2-derived epitopes that can be recognized by CD8(+) T cells, we used an approach that combined: 1) the in vitro proteasomal digestion of precursor peptides overlapping the complete SSX-2 sequence; 2) the prediction of SSX-2-derived peptides with an appropriate HLA-A2 binding score; and 3) the analysis of a tumor-infiltrated lymph node cell population from an HLA-A2(+) melanoma patient with detectable anti-SSX-2 serum Abs. This strategy allowed us to identify peptide SSX-2(41-49) as an HLA-A2-restricted epitope. SSX2(41-49)-specific CD8(+) T cells were readily detectable in the tumor-infiltrated lymph node population by multimer staining, and CTL clones isolated by multimer-guided cell sorting were able to lyse HLA-A2(+) tumor cells expressing SSX-2.
Resumo:
Memory and effector T cells have the potential to counteract cancer progression, but often fail to control the disease, essentially because of three main stumbling blocks. First, clonal deletion leads to relatively low numbers or low-to-intermediate T cell receptor (TCR) affinity of self/tumor-specific T cells. Second, the poor innate immune stimulation by solid tumors is responsible for inefficient priming and boosting. Third, T cells are suppressed in the tumor microenvironment by inhibitory signals from other immune cells, stroma and tumor cells, which induces T cell exhaustion, as demonstrated in metastases of melanoma patients. State-of-the-art adoptive cell transfer and active immunotherapy can partially overcome the three stumbling blocks. The reversibility of T cell exhaustion and novel molecular insights provide the basis for further improvements of clinical immunotherapy.
Resumo:
Some cancer patients mount spontaneous T- and B-cell responses against their tumor cells. Autologous tumor reactive CD8 cytolytic T lymphocyte (CTL) and CD4 T-cell clones as well as antibodies from these patients have been used for the identification of genes encoding the target antigens. This knowledge opened the way for new approaches to the immunotherapy of cancer. In this review, we describe the characterization of the structure-function properties of the melanocyte/melanoma tumor antigen Melan-A/MART-1, the assessment of the T-cell repertoire available against this antigen in healthy individuals, and the analysis of naturally acquired and/or vaccine-induced CTL responses to this antigen in patients with metastatic melanoma.
Resumo:
Optimal vaccine strategies must be identified for improving T-cell vaccination against infectious and malignant diseases. MelQbG10 is a virus-like nano-particle loaded with A-type CpG-oligonucleotides (CpG-ODN) and coupled to peptide(16-35) derived from Melan-A/MART-1. In this phase IIa clinical study, four groups of stage III-IV melanoma patients were vaccinated with MelQbG10, given (i) with IFA (Montanide) s.c.; (ii) with IFA s.c. and topical Imiquimod; (iii) i.d. with topical Imiquimod; or (iv) as intralymph node injection. In total, 16/21 (76%) patients generated ex vivo detectable Melan-A/MART-1-specific T-cell responses. T-cell frequencies were significantly higher when IFA was used as adjuvant, resulting in detectable T-cell responses in all (11/11) patients, with predominant generation of effector-memory-phenotype cells. In turn, Imiquimod induced higher proportions of central-memory-phenotype cells and increased percentages of CD127(+) (IL-7R) T cells. Direct injection of MelQbG10 into lymph nodes resulted in lower T-cell frequencies, associated with lower proportions of memory and effector-phenotype T cells. Swelling of vaccine site draining lymph nodes, and increased glucose uptake at PET/CT was observed in 13/15 (87%) of evaluable patients, reflecting vaccine triggered immune reactions in lymph nodes. We conclude that the simultaneous use of both Imiquimod and CpG-ODN induced combined memory and effector CD8(+) T-cell responses.
Resumo:
The avidity of the T-cell receptor (TCR) for antigenic peptides presented by the peptide-MHC (pMHC) on cells is a key parameter for cell-mediated immunity. Yet a fundamental feature of most tumor antigen-specific CD8(+) T cells is that this avidity is low. In this study, we addressed the need to identify and select tumor-specific CD8(+) T cells of highest avidity, which are of the greatest interest for adoptive cell therapy in patients with cancer. To identify these rare cells, we developed a peptide-MHC multimer technology, which uses reversible Ni(2+)-nitrilotriacetic acid histidine tags (NTAmers). NTAmers are highly stable but upon imidazole addition, they decay rapidly to pMHC monomers, allowing flow-cytometric-based measurements of monomeric TCR-pMHC dissociation rates of living CD8(+) T cells on a wide avidity spectrum. We documented strong correlations between NTAmer kinetic results and those obtained by surface plasmon resonance. Using NTAmers that were deficient for CD8 binding to pMHC, we found that CD8 itself stabilized the TCR-pMHC complex, prolonging the dissociation half-life several fold. Notably, our NTAmer technology accurately predicted the function of large panels of tumor-specific T cells that were isolated prospectively from patients with cancer. Overall, our results demonstrated that NTAmers are effective tools to isolate rare high-avidity cytotoxic T cells from patients for use in adoptive therapies for cancer treatment.
Resumo:
Spontaneous CD8 T-cell responses occur in growing tumors but are usually poorly effective. Understanding the molecular and cellular mechanisms that drive these responses is of major interest as they could be exploited to generate a more efficacious antitumor immunity. As such, stimulator of IFN genes (STING), an adaptor molecule involved in cytosolic DNA sensing, is required for the induction of antitumor CD8 T responses in mouse models of cancer. Here, we find that enforced activation of STING by intratumoral injection of cyclic dinucleotide GMP-AMP (cGAMP), potently enhanced antitumor CD8 T responses leading to growth control of injected and contralateral tumors in mouse models of melanoma and colon cancer. The ability of cGAMP to trigger antitumor immunity was further enhanced by the blockade of both PD1 and CTLA4. The STING-dependent antitumor immunity, either induced spontaneously in growing tumors or induced by intratumoral cGAMP injection was dependent on type I IFNs produced in the tumor microenvironment. In response to cGAMP injection, both in the mouse melanoma model and an ex vivo model of cultured human melanoma explants, the principal source of type I IFN was not dendritic cells, but instead endothelial cells. Similarly, endothelial cells but not dendritic cells were found to be the principal source of spontaneously induced type I IFNs in growing tumors. These data identify an unexpected role of the tumor vasculature in the initiation of CD8 T-cell antitumor immunity and demonstrate that tumor endothelial cells can be targeted for immunotherapy of melanoma.