204 resultados para Arm Support
Resumo:
Introduction and aim: Children hospitalised in a paediatric intensive care unit (PICU) are mainly fed by nutritional support (NS) which may often be interrupted. The aims of the study were to verify the relationship between prescribed (PEI) and actual energy intake (AEI) and to identify the reasons for NS interruption. Methods: Prospective study in a PICU. PEI and AEI from day 1 to 15, type of NS (enteral, parenteral, mixed), position of the feeding tube, interruptions in NS and reasons for these were noted. Inter - ruptions were classified in categories of barriers and their frequency and duration were analysed. Results: Fifteen children (24 ± 25.2 months) were studied for 84 days. The NS was exclusively enteral (69%) or mixed (31%). PEI were significantly higher than AEI (54.7 ± 32.9 vs 49.2 ± 33.6 kcal/kg, p = 0.0011). AEI represented 93% of the PEI. Ninety-eight interruptions were noted and lasted 189 h, i.e. 9.4% of the evaluated time. The most frequent barriers were nursing procedures, respiratory physiotherapy and unavailability of intravenous access. The longest were caused by the necessity to stop NS for surgery or diagnostic studies, to treat burns or to carry out medical procedures. Conclusion: AEI in PICU were inferior by 7% to PEI, considerably lower than in adult studies. Making these results available to medical staff for greater anticipation and compensation could reduce NS interruptions. Starving protocols should be reconsidered.
Resumo:
OBJECTIVE: Cuff inflation at the arm is known to cause an instantaneous rise in blood pressure, which might be due to the discomfort of the procedure and might interfere with the precision of the blood pressure measurement. In this study, we compared the reactive rise in blood pressure induced by cuff inflation when the cuff was placed at the upper arm level and at the wrist. PARTICIPANTS AND METHODS: The reactive rise in systolic and diastolic blood pressure to cuff inflation was measured in 34 normotensive participants and 34 hypertensive patients. Each participant was equipped with two cuffs, one around the right upper arm (OMRON HEM-CR19, 22-32 cm) and one around the right wrist (OMRON HEM-CS 19, 17-22 cm; Omron Health Care Europe BV, Hoofddorp, The Netherlands). The cuffs were inflated in a double random order (maximal cuff pressure and position of the cuff) with two maximal cuff pressures: 180 and 240 mmHg. The cuffs were linked to an oscillometric device (OMRON HEM 907; Omron Health Care). Simultaneously, blood pressure was measured continuously at the middle finger of the left hand using photoplethysmography. Three measurements were made at each level of blood pressure at the arm and at the wrist, and the sequence of measurements was randomized. RESULTS: In normotensive participants, no significant difference was observed in the reactive rise in blood pressure when the cuff was inflated either at the arm or at the wrist irrespective of the level of cuff inflation. Inflating a cuff at the arm, however, induced a significantly greater rise in blood pressure than inflating it at the wrist in hypertensive participants for both systolic and diastolic pressures (P<0.01), and at both levels of cuff inflation. The blood pressure response to cuff inflation was independent of baseline blood pressure. CONCLUSIONS: The results show that in hypertensive patients, cuff inflation at the wrist produces a smaller reactive rise in blood pressure. The difference between the arm and the wrist is independent of the patient's level of blood pressure.
Resumo:
BACKGROUND AND OBJECTIVE: Investigations were performed to establish if repetitive arm cycling training enhances the antispastic effect of intramuscular botulinum toxin (BTX) injections in postischemic spastic hemiparesis. Effects on cerebral activation were evaluated by functional magnetic resonance imaging (fMRI). METHODS: Eight chronic spastic hemisyndrome patients (49 ± 10 years) after middle cerebral artery infarction (5.5 ± 2.7 years) were investigated. BTX was injected into the affected arm twice, 6 months apart. Spasticity was assessed using the Ashworth Scale and range of motion before and 3 months after BTX injections. Images were analyzed using Brain Voyager QX 1.8, and fMRI signal changes were corrected for multiple comparisons. RESULTS: During passive movements of affected and nonaffected hands, fMRI activity was increased bilaterally in the sensorimotor cortex (MISI), secondary somatosensory areas (SII), and supplementary motor area predominantly in the contralesional hemisphere, compared with the rest. Following repetitive arm cycling, fMRI activity increased further in MISI of the lesioned hemisphere and SII of the contralesional hemisphere. For patients with residual motor activity, treatment-related fMRI activity increases were associated with reduced spasticity; in completely plegic patients, there was no fMRI activity change in SII but increased spasticity after training. CONCLUSION: Increased activity in SII of the contralesional hemisphere and in MISI of the lesioned hemisphere reflect a treatment-induced effect in the paretic arm. It is hypothesized that the increased BOLD activity results from increased afferent information related to the antispastic BTX effect reinforced by training.
Resumo:
To evaluate the impact of noninvasive ventilation (NIV) algorithms available on intensive care unit ventilators on the incidence of patient-ventilator asynchrony in patients receiving NIV for acute respiratory failure. Prospective multicenter randomized cross-over study. Intensive care units in three university hospitals. Patients consecutively admitted to the ICU and treated by NIV with an ICU ventilator were included. Airway pressure, flow and surface diaphragmatic electromyography were recorded continuously during two 30-min periods, with the NIV (NIV+) or without the NIV algorithm (NIV0). Asynchrony events, the asynchrony index (AI) and a specific asynchrony index influenced by leaks (AIleaks) were determined from tracing analysis. Sixty-five patients were included. With and without the NIV algorithm, respectively, auto-triggering was present in 14 (22%) and 10 (15%) patients, ineffective breaths in 15 (23%) and 5 (8%) (p = 0.004), late cycling in 11 (17%) and 5 (8%) (p = 0.003), premature cycling in 22 (34%) and 21 (32%), and double triggering in 3 (5%) and 6 (9%). The mean number of asynchronies influenced by leaks was significantly reduced by the NIV algorithm (p < 0.05). A significant correlation was found between the magnitude of leaks and AIleaks when the NIV algorithm was not activated (p = 0.03). The global AI remained unchanged, mainly because on some ventilators with the NIV algorithm premature cycling occurs. In acute respiratory failure, NIV algorithms provided by ICU ventilators can reduce the incidence of asynchronies because of leaks, thus confirming bench test results, but some of these algorithms can generate premature cycling.
Resumo:
The primary care center at Lausanne University Hospital trains residents to new models of integrated care. The future GPs discover new forms of collaboration with nurses, pharmacists or social workers. The collaboration model includes seeing patients together or delegating care to other providers, with the aim of improving the efficiency of a patient-centered care approach. The article includes examples of integrated care in consultation for travelers, victims of violence, pharmacist medication adherence counseling, medicosocial team work for alcohol use disorders and nurse practitioners' primary care for asylum seekers.
Resumo:
OBJECTIVE: Home blood pressure (BP) monitoring is recommended by several clinical guidelines and has been shown to be feasible in elderly persons. Wrist manometers have recently been proposed for such home BP measurement, but their accuracy has not been previously assessed in elderly patients. METHODS: Forty-eight participants (33 women and 15 men, mean age 81.3±8.0 years) had their BP measured with a wrist device with position sensor and an arm device in random order in a sitting position. RESULTS: Average BP measurements were consistently lower with the wrist than arm device for systolic BP (120.1±2.2 vs. 130.5±2.2 mmHg, P<0.001, means±SD) and diastolic BP (66.0±1.3 vs. 69.7±1.3 mmHg, P<0.001). Moreover, a 10 mmHg or greater difference between the arm and wrist device was observed in 54.2 and 18.8% of systolic and diastolic measures, respectively. CONCLUSION: Compared with the arm device, the wrist device with position sensor systematically underestimated systolic as well as diastolic BP. The magnitude of the difference is clinically significant and questions the use of the wrist device to monitor BP in elderly persons. This study points to the need to validate BP measuring devices in all age groups, including in elderly persons.
Resumo:
The decision-making process regarding drug dose, regularly used in everyday medical practice, is critical to patients' health and recovery. It is a challenging process, especially for a drug with narrow therapeutic ranges, in which a medical doctor decides the quantity (dose amount) and frequency (dose interval) on the basis of a set of available patient features and doctor's clinical experience (a priori adaptation). Computer support in drug dose administration makes the prescription procedure faster, more accurate, objective, and less expensive, with a tendency to reduce the number of invasive procedures. This paper presents an advanced integrated Drug Administration Decision Support System (DADSS) to help clinicians/patients with the dose computing. Based on a support vector machine (SVM) algorithm, enhanced with the random sample consensus technique, this system is able to predict the drug concentration values and computes the ideal dose amount and dose interval for a new patient. With an extension to combine the SVM method and the explicit analytical model, the advanced integrated DADSS system is able to compute drug concentration-to-time curves for a patient under different conditions. A feedback loop is enabled to update the curve with a new measured concentration value to make it more personalized (a posteriori adaptation).
Resumo:
OBJECTIVES: To document the prevalence of asynchrony events during noninvasive ventilation in pressure support in infants and in children and to compare the results with neurally adjusted ventilatory assist. DESIGN: Prospective randomized cross-over study in children undergoing noninvasive ventilation. SETTING: The study was performed in a PICU. PATIENTS: From 4 weeks to 5 years. INTERVENTIONS: Two consecutive ventilation periods (pressure support and neurally adjusted ventilatory assist) were applied in random order. During pressure support (PS), three levels of expiratory trigger (ETS) setting were compared: initial ETS (PSinit), and ETS value decreased and increased by 15%. Of the three sessions, the period allowing for the lowest number of asynchrony events was defined as PSbest. Neurally adjusted ventilator assist level was adjusted to match the maximum airway pressure during PSinit. Positive end-expiratory pressure was the same during pressure support and neurally adjusted ventilator assist. Asynchrony events, trigger delay, and cycling-off delay were quantified for each period. RESULTS: Six infants and children were studied. Trigger delay was lower with neurally adjusted ventilator assist versus PSinit and PSbest (61 ms [56-79] vs 149 ms [134-180] and 146 ms [101-162]; p = 0.001 and 0.02, respectively). Inspiratory time in excess showed a trend to be shorter during pressure support versus neurally adjusted ventilator assist. Main asynchrony events during PSinit were autotriggering (4.8/min [1.7-12]), ineffective efforts (9.9/min [1.7-18]), and premature cycling (6.3/min [3.2-18.7]). Premature cycling (3.4/min [1.1-7.7]) was less frequent during PSbest versus PSinit (p = 0.059). The asynchrony index was significantly lower during PSbest versus PSinit (40% [28-65] vs 65.5% [42-76], p < 0.001). With neurally adjusted ventilator assist, all types of asynchronies except double triggering were reduced. The asynchrony index was lower with neurally adjusted ventilator assist (2.3% [0.7-5] vs PSinit and PSbest, p < 0.05 for both comparisons). CONCLUSION: Asynchrony events are frequent during noninvasive ventilation with pressure support in infants and in children despite adjusting the cycling-off criterion. Compared with pressure support, neurally adjusted ventilator assist allows improving patient-ventilator synchrony by reducing trigger delay and the number of asynchrony events. Further studies should determine the clinical impact of these findings.