343 resultados para Alpha-adrenergic blockade
Resumo:
Activation of the peroxisome proliferator-activated receptor (PPAR)-alpha increases lipid catabolism and lowers the concentration of circulating lipid, but its role in the control of glucose metabolism is not as clearly established. Here we compared PPARalpha knockout mice with wild type and confirmed that the former developed hypoglycemia during fasting. This was associated with only a slight increase in insulin sensitivity but a dramatic increase in whole-body and adipose tissue glucose use rates in the fasting state. The white sc and visceral fat depots were larger due to an increase in the size and number of adipocytes, and their level of GLUT4 expression was higher and no longer regulated by the fed-to-fast transition. To evaluate whether these adipocyte deregulations were secondary to the absence of PPARalpha from liver, we reexpresssed this transcription factor in the liver of knockout mice using recombinant adenoviruses. Whereas more than 90% of the hepatocytes were infected and PPARalpha expression was restored to normal levels, the whole-body glucose use rate remained elevated. Next, to evaluate whether brain PPARalpha could affect glucose homeostasis, we activated brain PPARalpha in wild-type mice by infusing WY14643 into the lateral ventricle and showed that whole-body glucose use was reduced. Hence, our data show that PPARalpha is involved in the regulation of glucose homeostasis, insulin sensitivity, fat accumulation, and adipose tissue glucose use by a mechanism that does not require PPARalpha expression in the liver. By contrast, activation of PPARalpha in the brain stimulates peripheral glucose use. This suggests that the alteration in adipocyte glucose metabolism in the knockout mice may result from the absence of PPARalpha in the brain.
Resumo:
Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Plasmodium falciparum were identified in the P. vivax genome. The peptides identified in silico were chemically synthesized; circular dichroism studies indicated partial or high α-helical content. Antigenicity was evaluated using human sera samples from malaria-endemic areas of Colombia and Papua New Guinea. Eight of these fragments were selected and used to assess immunogenicity in BALB/c mice. ELISA assays indicated strong reactivity of serum samples from individuals residing in malaria-endemic regions and sera of immunized mice, with the α-helical coiled coil structures. In addition, ex vivo production of IFN-γ by murine mononuclear cells confirmed the immunogenicity of these structures and the presence of T-cell epitopes in the peptide sequences. Moreover, sera of mice immunized with four of the eight antigens recognized native proteins on blood-stage P. vivax parasites, and antigenic cross-reactivity with three of the peptides was observed when reacted with both the P. falciparum orthologous fragments and whole parasites. Results here point to the α-helical coiled coil peptides as possible P. vivax malaria vaccine candidates as were observed for P. falciparum. Fragments selected here warrant further study in humans and non-human primate models to assess their protective efficacy as single components or assembled as hybrid linear epitopes.
Resumo:
Alpha-ketoglutarate-dependent (R)-dichlorprop dioxygenase (RdpA) and alpha-ketoglutarate-dependent (S)-dichlorprop dioxygenase (SdpA), which are involved in the degradation of phenoxyalkanoic acid herbicides in Sphingomonas herbicidovorans MH, were expressed and purified as His6-tagged fusion proteins from Escherichia coli BL21(DE3)(pLysS). RdpA and SdpA belong to subgroup II of the alpha-ketoglutarate-dependent dioxygenases and share the specific motif HXDX(24)TX(131)HX(10)R. Amino acids His-111, Asp-113, and His-270 and amino acids His-102, Asp-104, and His 257 comprise the 2-His-1-carboxylate facial triads and were predicted to be involved in iron binding in RdpA and SdpA, respectively. RdpA exclusively transformed the (R) enantiomers of mecoprop [2-(4-chloro-2-methylphenoxy)propanoic acid] and dichlorprop [2-(2,4-dichlorophenoxy)propanoic acid], whereas SdpA was specific for the (S) enantiomers. The apparent Km values were 99 microM for (R)-mecoprop, 164 microM for (R)-dichlorprop, and 3 microM for alpha-ketoglutarate for RdpA and 132 microM for (S)-mecoprop, 495 microM for (S)-dichlorprop, and 20 microM for alpha-ketoglutarate for SdpA. Both enzymes had high apparent Km values for oxygen; these values were 159 microM for SdpA and >230 microM for RdpA, whose activity was linearly dependent on oxygen at the concentration range measured. Both enzymes had narrow cosubstrate specificity; only 2-oxoadipate was able to replace alpha-ketoglutarate, and the rates were substantially diminished. Ferrous iron was necessary for activity of the enzymes, and other divalent cations could not replace it. Although the results of growth experiments suggest that strain MH harbors a specific 2,4-dichlorophenoxyacetic acid-converting enzyme, tfdA-, tfdAalpha-, or cadAB-like genes were not discovered in a screening analysis in which heterologous hybridization and PCR were used.
Resumo:
Toxic epidermal necrolysis (TEN, Lyell's syndrome) is a severe adverse drug reaction in which keratinocytes die and large sections of epidermis separate from the dermis. Keratinocytes normally express the death receptor Fas (CD95); those from TEN patients were found to express lytically active Fas ligand (FasL). Antibodies present in pooled human intravenous immunoglobulins (IVIG) blocked Fas-mediated keratinocyte death in vitro. In a pilot study, 10 consecutive individuals with clinically and histologically confirmed TEN were treated with IVIG; disease progression was rapidly reversed and the outcome was favorable in all cases. Thus, Fas-FasL interactions are directly involved in the epidermal necrolysis of TEN, and IVIG may be an effective treatment.
Hemodynamic consequences of chronic parasympathetic blockade with a peripheral muscarinic antagonist
Resumo:
Résumé Alors que le système nerveux sympathique a un rôle bien établi dans la régulation de la pression artérielle, l'influence de la fonction ou dysfonction du système parasympathique sur la pression artérielle n'est pas évidente, en particulier à long terme. Nous avons testé l'hypothèse que l'inhibition chronique du système parasympathique a un effet persistant sur la pression artérielle (PA), la fréquence cardiaque (FC) et la variabilité de la pression artérielle (VPA). Des rats de type Sprague Dawley ont été instrumentés pour monitoring de la pression artérielle 22h par jour par télémétrie et abrités dans des cages métaboliques. Après guérison de l'intervention et après une période contrôle de référence, de la scopolamine methyl bromide (SMB), un antagoniste muscarinique périphérique, a été perfusé i.v. pendant 12 jours. Le tout fut suivi d'une période de récupération de 10 jours. La SMB a entraîné une augmentation rapide de la PA de 98±2 mmHg à un maximum de 108±2 mmHg le deuxième jour de perfusion de la SMB puis la PA s'est stabilisée à une valeur plateau de +3±1 mmHg au dessus de la valeur contrôle (P < 0.05). Après l'arrêt de la perfusion de SMB, la PA moyenne a diminué de 6±1 mmHg. La FC a augmenté immédiatement et est restée significativement au dessus de la valeur contrôle le dernier jour de 1a perfusion de SMB. La SMB a également induit une diminution de la variabilité à court terme de la FC (au sein d'intervalles de 30 minutes et une augmentation de la variabilité à court terme et à long terme (entre intervalles de 30 minutes) de la PA. Ces données suggèrent que l'inhibition muscarinique périphérique chronique conduit à une augmentation modeste mais persistante de la PA, FC et VPA, qui sont des facteurs de risque cardiovasculaires connus.
Time of injection determines the effect of alpha-MSH antiserum on DA neurons in psychological stress
Resumo:
Male rats were subjected to "psychological stress" which consisted in 10 sec footshock on the first day followed 24 hr later by a 10 sec stay in the experimental chamber without shock. Intravenous antiserum against alpha-MSH markedly changed the functional state of mesencephalic and hypothalamic DA neurons (assessed by histochemical microfluorimetry) when administered before the second session but not when given before the first session. These observations reveal an interesting parallelism in the temporal characteristics of the effects of alpha-MSH on avoidance behavior and central DA systems.
Resumo:
Streptococcus gordonii alpha-phosphoglucomutase, which converts glucose 6-phosphate to glucose 1-phosphate, is encoded by pgm. The pgm transcript is monocistronic and is initiated from a sigma(A)-like promoter. Mutants with a gene disruption in pgm exhibited an altered cell wall muropeptide pattern and a lower teichoic acid content, and had reduced fitness both in vitro and in vivo. In vitro, the reduced fitness included reduced growth, reduced viability in the stationary phase and increased autolytic activity. In vivo, the pgm-deficient strain had a lower virulence in a rat model of experimental endocarditis.
Resumo:
We examined the contribution of each alpha(1)-adrenoceptor (AR) subtype in noradrenaline (NAd)-evoked contraction in the thoracic aortas and mesenteric arteries of mice. Compared with the concentration-response curves (CRCs) for NAd in the thoracic aortas of wild-type (WT) mice, the CRCs of mutant mice showed a significantly lower sensitivity. The pD(2) value in rank order is as follows: WT mice (8.21) > alpha(1B)-adrenoceptor knockout (alpha(1B)-KO) (7.77) > alpha(1D)-AR knockout (alpha(1D)-KO) (6.44) > alpha(1B)- and alpha(1D)-AR double knockout (alpha(1BD)-KO) (5.15). In the mesenteric artery, CRCs for NAd did not differ significantly between either WT (6.52) and alpha(1B)-KO mice (7.12) or alpha(1D)-KO (6.19) and alpha(1BD)-KO (6.29) mice. However, the CRC maximum responses to NAd in alpha(1D)- and alpha(1BD)-KO mice were significantly lower than those in WT and alpha(1B)-KO mice. Except in the thoracic aortas of alpha(1BD)-KO mice, the competitive antagonist prazosin inhibited the contraction response to NAd with high affinity. However, prazosin produced shallow Schild slopes in the vessels of mice lacking the alpha(1D)-AR gene. In the thoracic aorta, pA(2) values in WT mice for KMD-3213 and BMY7378 were 8.25 and 8.46, respectively, and in alpha(1B)-KO mice they were 8.49 and 9.13, respectively. In the mesenteric artery, pA(2) values in WT mice for KMD-3213 and BMY7378 were 8.34 and 7.47, respectively, and in alpha(1B)-KO mice they were 8.11 and 7.82, respectively. These pharmacological findings were in fairly good agreement with findings from comparison of CRCs, with the exception of the mesenteric arteries of WT and alpha(1B)-KO mice, which showed low affinities to BMY7378. We performed a quantitative analysis of the mRNA expression of each alpha(1)-AR subtype in these vessels in order to examine the correlation between mRNA expression level and the predominance of each alpha(1)-AR subtype in mediating vascular contraction. The rank order of each alpha(1)-AR subtype in terms of its vasoconstrictor role was in fairly good agreement with the level of expression of mRNA of each subtype, that is, alpha(1D)-AR > alpha(1B)-AR > alpha(1A)-AR in the thoracic aorta and alpha(1D)-AR > alpha(1A)-AR > alpha(1B)-AR in the mesenteric artery. No dramatic compensatory change of alpha(1)-AR subtype in mutant mice was observed in pharmacological or quantitative mRNA expression analysis.
Resumo:
Introduction: La disposition de l'imatinib (Glivec®) implique des systèmes connus pour de grandes différences inter-individuelles, et l'on peut s'attendre à ce que l'exposition à ce médicament varie largement d'un patient à l'autre. L'alpha-1-glycoprotéine acide (AAG), une protéine circulante liant fortement l'imatinib, représente l'un de ces systèmes. Objectif: Cette étude observationnelle visait à explorer l'influence de l'AAG plasmatique sur la pharmacocinétique de l'imatinib. Méthode: Une analyse de population a été effectuée avec le programme NONMEM sur 278 échantillons plasmatiques issus de 51 patients oncologiques. L'influence des taux d'AAG sur la clairance (CL) et le volume de distribution (Vd) a ainsi été étudiée. Résultats: Un modèle à un compartiment avec absorption de premier ordre a permis de décrire les données. Une relation hyperbolique entre taux d'AAG et CL ou Vd a été observée. Une approche mécanistique a donc été élaborée, postulant que seule la concentration libre subissait une élimination du premier ordre, et intégrant la constante de dissociation comme paramètre du modèle. Cette approche a permis de déterminer une CLlibre moyenne de 1310 l/h et un Vd de 301 l. Par comparaison, la CLtotale déterminée initialement était de 14 l/h. La CLlibre est affectée par le poids corporel et le type de pathologie. Qui plus est, ce modèle a permis d'estimer in vivo la constante d'association entre imatinib et AAG (5.5?106 l/mol), ainsi que la fraction libre moyenne de l'imatinib (1.1%). La variabilité inter-individuelle estimée pour la disposition de l'imatinib (17% sur CLlibre et 66% sur Vd) diminuait globalement de moitié avec le modèle incorporant l'impact de l'AAG. Discussion-conclusion: De tels résultats clarifient l'impact de la liaison protéinique sur le devenir de l'imatinib. Des taux élevés d'AAG ont été présumés représenter un facteur de résistance à l'imatinib. Toutefois, cela est peu probable, notre modèle prédisant que la concentration libre reste inchangée. D'un autre côté, s'il est un jour démontré que l'imatinib requiert un programme de suivi thérapeutique (TDM), la mesure des concentrations libres, ou la correction des concentrations totales en fonction des taux d'AAG, devraient être envisagées pour une interprétation précise des résultats.
Resumo:
INTRODUCTION: Epinephrine autoinjector devices are used with increasing frequency to treat severe anaphylactic reactions. Accidental injection, usually involving a finger, is a potential complication. CASE PRESENTATION: A physician in a Family Practice training program accidentally injected epinephrine into his left thumb while reading the operating instructions of an autoinjector (Epipen((R))). He developed swelling, pallor, and pain in the thumb. Treatment included topical nitroglycerin, oral vasodilators and warming of the thumb. As expected, none caused an immediate response; however, after 8 hours, the thumb was pink and warm. There was full recovery 2 months after the accident. We reviewed the treatment of accidental epinephrine injection, and found that the use of parenteral adrenergic alpha blocker phentolamine would have produced immediate recovery. CONCLUSIONS: All health professionals concerned with the use of epinephrine autoinjectors should receive adequate instruction on their use. A regimen for management of accidental epinephrine injection, in particular the use of phentolamine, should be emphasized.
Resumo:
The autosomal recessive form of type I pseudohypoaldosteronism (PHA-I) is an inherited salt-losing syndrome resulting from diminution-of-function mutations in the 3 subunits of the epithelial Na+ channel (ENaC). A PHA-I stop mutation (alpha(R508stop)) of the ENaC alpha subunit is predicted to lack the second transmembrane domain and the intracellular COOH-terminus, regions of the protein involved in pore function. Nonetheless, we observed a measurable Na+ current in Xenopus laevis oocytes that coexpress the beta and gamma subunits with the truncated alpha subunit. The mutant alpha was coassembled with beta and gamma subunits and was present at the cell surface at a lower density, consistent with the lower Na+ current seen in oocytes with the truncated alpha subunit. The single-channel Na+ conductance for the mutant channel was only slightly decreased, and the appearance of the macroscopic currents was delayed by 48 hours with respect to wild-type. Our data suggest novel roles for the alpha subunit in the assembly and targeting of an active channel to the cell surface, and suggest that channel pores consisting of only the beta and gamma subunits can provide significant residual activity. This activity may be sufficient to explain the absence of a severe pulmonary phenotype in patients with PHA-I.
Resumo:
Nonstructural protein 4B (NS4B) plays an essential role in the formation of the hepatitis C virus (HCV) replication complex. It is an integral membrane protein that has been only poorly characterized to date. It is believed to comprise a cytosolic N-terminal part, a central part harboring four transmembrane passages, and a cytosolic C-terminal part. Here, we describe an amphipathic alpha-helix at the C terminus of NS4B (amino acid residues 229 to 253) that mediates membrane association and is involved in the formation of a functional HCV replication complex.
Resumo:
The goal of adoptive T cell therapy in cancer is to provide effective antitumor immunity by transfer of selected populations of tumor Ag-specific T cells. Transfer of T cells with high TCR avidity is critical for in vivo efficacy. In this study, we demonstrate that fluorescent peptide/MHC class I multimeric complexes incorporating mutations in the alpha3 domain (D227K/T228A) that abrogate binding to the CD8 coreceptor can be used to selectively isolate tumor Ag-specific T cells of high functional avidity from both in vitro expanded and ex vivo T cell populations. Sorting, cloning, and expansion of alpha3 domain mutant multimer-positive CD8 T cells enabled rapid selection of high avidity tumor-reactive T cell clones. Our results are relevant for ex vivo identification and isolation of T cells with potent antitumor activity for adoptive T cell therapy.
Resumo:
Longitudinal studies on the kinetics of viral antigen specific CD8 T cell responses have led to a model whereby a relatively small subset of the primary effector CD8 T cells expanding after the first week of acute viral infection initiate a program of cell survival and differentiation into long lived memory T cells. These T cells are then critical for maintaining protective immunity to subsequent viral infection. Recent observations, using fluorescent tetramers of the MHC class Ib molecule TL, link transient expression of CD8alphaalpha homodimers on expanding primary effector CD8 T cells to the generation of memory cells. At present it is controversial what the role of CD8alphaalpha is in the generation of memory CD8 T cells. The involvement of the high affinity CD8alphaalpha ligand, the TL molecule, is not understood either. However, evidence from two viral infection models in mice, including one paper in this issue of the European Journal of Immunology, suggest a role for CD8alphaalpha in this process and call for additional research focus into these issues.
Resumo:
Tasosartan is a long-acting angiotensin II (AngII) receptor blocker. Its long duration of action has been attributed to its active metabolite enoltasosartan. In this study we evaluated the relative contribution of tasosartan and enoltasosartan to the overall pharmacological effect of tasosartan. AngII receptor blockade effect of single doses of tasosartan (100 mg p.o. and 50 mg i.v) and enoltasosartan (2.5 mg i.v.) were compared in 12 healthy subjects in a randomized, double blind, three-period crossover study using two approaches: the in vivo blood pressure response to exogenous AngII and an ex vivo AngII radioreceptor assay. Tasosartan induced a rapid and sustained blockade of AngII subtype-1 (AT1) receptors. In vivo, tasosartan (p.o. or i.v.) blocked by 80% AT1 receptors 1 to 2 h after drug administration and still had a 40% effect at 32 h. In vitro, the blockade was estimated to be 90% at 2 h and 20% at 32 h. In contrast, the blockade induced by enoltasosartan was markedly delayed and hardly reached 60 to 70% despite the i.v. administration and high plasma levels. In vitro, the AT1 antagonistic effect of enoltasosartan was markedly influenced by the presence of plasma proteins, leading to a decrease in its affinity for the receptor and a slower receptor association rate. The early effect of tasosartan is due mainly to tasosartan itself with little if any contribution of enoltasosartan. The antagonistic effect of enoltasosartan appears later. The delayed in vivo blockade effect observed for enoltasosartan appears to be due to a high and tight protein binding and a slow dissociation process from the carrier.