322 resultados para Adrenocortical hormones
Resumo:
Nutrient ingestion triggers a complex hormonal response aimed at stimulating glucose utilization in liver, muscle and adipose tissue to minimize the raise in blood glucose levels. Insulin secretion by pancreatic beta cells plays a major role in this response. Although the beta cell secretary response is mainly controlled by blood glucose levels, gut hormones secreted in response to food intake have an important role in potentiating glucose-stimulated insulin secretion. These gluco-incretin hormones are GLP-1 (glucagon-like peptide-1) and GIP (gluco-dependent insulinotropic polypeptide). Their action on pancreatic beta cells depends on binding to specific G-coupled receptors linked to activation of the adenylyl cyclase pathway. In addition to their effect on insulin secretion both hormones also stimulate insulin production at the transcriptional and translational level and positively regulate beta cell mass. Because the glucose-dependent insulinotropic action of GLP-1 is preserved in type 2 diabetic patients, this peptide is now developed as a novel therapeutic drug for this disease.
Resumo:
The plant hormones auxin and brassinosteroid are both essential regulators of plant growth and known to influence both cell division and cell elongation in various developmental contexts. These physiological effects of auxin and brassinosteroid have been known for many years. Based on observations from external simultaneous application of both hormones to plant tissues, it has been suggested that they act in an interdependent and possibly synergistic manner. Recent work in the model plant Arabidopsis thaliana suggests that, at the molecular level, auxin-brassinosteroid synergism manifests itself in the regulation of the expression of common target genes. However, whether this reflects genuine hormone pathway-dependent crosstalk modulation of the transcription machinery or rather indirect effects of hormone action on other cellular activities, such as hormone biosynthesis or the polar transport of auxin, is not entirely clear. This article reviews the evidence for transcriptional crosstalk between auxin and brassinosteroid and its molecular basis.
Resumo:
Prolonged deprivation of food induces dramatic changes in mammalian metabolism, including the release of large amounts of fatty acids from the adipose tissue, followed by their oxidation in the liver. The nuclear receptor known as peroxisome proliferator-activated receptor alpha (PPARalpha) was found to play a role in regulating mitochondrial and peroxisomal fatty acid oxidation, suggesting that PPARalpha may be involved in the transcriptional response to fasting. To investigate this possibility, PPARalpha-null mice were subjected to a high fat diet or to fasting, and their responses were compared with those of wild-type mice. PPARalpha-null mice chronically fed a high fat diet showed a massive accumulation of lipid in their livers. A similar phenotype was noted in PPARalpha-null mice fasted for 24 hours, who also displayed severe hypoglycemia, hypoketonemia, hypothermia, and elevated plasma free fatty acid levels, indicating a dramatic inhibition of fatty acid uptake and oxidation. It is shown that to accommodate the increased requirement for hepatic fatty acid oxidation, PPARalpha mRNA is induced during fasting in wild-type mice. The data indicate that PPARalpha plays a pivotal role in the management of energy stores during fasting. By modulating gene expression, PPARalpha stimulates hepatic fatty acid oxidation to supply substrates that can be metabolized by other tissues.
Resumo:
The purpose of this study was to analyze the composition of 103 dietary supplements bought on the internet. The supplements were dispatched in four different categories according to their announced contents [creatine, prohormones, "mental enhancers" and branched chain amino acids (BCAA)]. All the supplements were screened for the presence of stimulants and main anabolic steroids parent compounds. At the same time, the research was focused on the precursors and metabolites of testosterone and nandrolone. The study pointed out three products containing an anabolic steroid, metandienone, in a very high amount. The ingestion of such products induced a high quantity of metandienone metabolites in urines that would be considered as a positive antidoping test. The results have also shown that one creatine product and three "mental enhancers" contained traces of hormones or prohormones not claimed on the labels and 14 prohormone products contained substances other than those indicated by the manufacturer. The oral intake of the creatine product revealed the presence of the two main nandrolone metabolites (19-norandrosterone and 19-noretiocholanolone) in urine.
Resumo:
Although generally considered as a slowly evolving disease, idiopathic pulmonary fibrosis (IPF) is also characterized by episods of rapid deterioration with worsening of dyspnea and hypoxemia, and new ground glass opacities at imaging. These events called "acute exacerbations" (AE) are responsible for half of all deaths in IPF. Pathophysiologic mechanisms of AE are poorly understood. The effectiveness of corticosteroids and immunosuppressive agents appears limited. The mortality of AE is 60-70%. Preventing or controlling AE could improve the overall prognosis of IPF. AE also exist in other interstitial lung diseases.
Resumo:
The monocarboxylate transporter 1 (MCT1 or SLC16A1) is a carrier of short-chain fatty acids, ketone bodies, and lactate in several tissues. Genetically modified C57BL/6J mice were produced by targeted disruption of the mct1 gene in order to understand the role of this transporter in energy homeostasis. Null mutation was embryonically lethal, but MCT1 (+/-) mice developed normally. However, when fed high fat diet (HFD), MCT1 (+/-) mice displayed resistance to development of diet-induced obesity (24.8% lower body weight after 16 weeks of HFD), as well as less insulin resistance and no hepatic steatosis as compared to littermate MCT1 (+/+) mice used as controls. Body composition analysis revealed that reduced weight gain in MCT1 (+/-) mice was due to decreased fat accumulation (50.0% less after 9 months of HFD) notably in liver and white adipose tissue. This phenotype was associated with reduced food intake under HFD (12.3% less over 10 weeks) and decreased intestinal energy absorption (9.6% higher stool energy content). Indirect calorimetry measurements showed ∼ 15% increase in O2 consumption and CO2 production during the resting phase, without any changes in physical activity. Determination of plasma concentrations for various metabolites and hormones did not reveal significant changes in lactate and ketone bodies levels between the two genotypes, but both insulin and leptin levels, which were elevated in MCT1 (+/+) mice when fed HFD, were reduced in MCT1 (+/-) mice under HFD. Interestingly, the enhancement in expression of several genes involved in lipid metabolism in the liver of MCT1 (+/+) mice under high fat diet was prevented in the liver of MCT1 (+/-) mice under the same diet, thus likely contributing to the observed phenotype. These findings uncover the critical role of MCT1 in the regulation of energy balance when animals are exposed to an obesogenic diet.
Resumo:
The amiloride-sensitive epithelial sodium channel constitutes the rate-limiting step for sodium reabsorption in epithelial cells that line the distal part of the renal tubule, the distal colon, the duct of several exocrine glands, and the lung. The activity of this channel is upregulated by vasopressin and aldosterone, hormones involved in the maintenance of sodium balance, blood volume and blood pressure. We have identified the primary structure of the alpha-subunit of the rat epithelial sodium channel by expression cloning in Xenopus laevis oocytes. An identical subunit has recently been reported. Here we identify two other subunits (beta and gamma) by functional complementation of the alpha-subunit of the rat epithelial Na+ channel. The ion-selective permeability, the gating properties and the pharmacological profile of the channel formed by coexpressing the three subunits in oocytes are similar to that of the native channel.
Resumo:
Cutaneous melanoma is an aggressive malignant tumor of melanocytes, the pigment- producing cells of the epidermis, with a high incidence in developed countries. Despite some major clinical breakthroughs in the last few years, efficient therapies for metastatic melanoma, which portends a very bad prognosis, are still lacking. Among the potential therapeutic targets that have been attracting at-tention in melanoma are the peroxisome proliferator-activated receptors (PPARs). These members - a, ß and 7 - of the nuclear hormone receptor family, which are ligand-gated transcription factors endowed with a multitude of functions besides metabolism homeostasis, have displayed promising antitumor properties in a wide range of cancer cells, including melanoma. However, our knowledge of PPARs' functions in this skin cancer is far from complete, making the usefulness of any of the a, ß or 7 isotype as a therapeutic target uncertain. In this work, we showed that all three PPAR isotypes are expressed in normal melanocytes, in most melanoma cell lines and in primary and metastatic melanomas, and that PPAR/3 and 7 display transcriptional activity in normal melanocytes and melanoma cells. We also showed that the PPAR7 agonist rosiglitazone had anti-melanoma properties largely independent of PPAR7 expression, which was widely varying across the different cell lines and melanoma biopsies we evaluated and was not correlated with cell line stage. Consistent with the general view of PPAR7 as a tumor suppressor gene, we found that, in human samples, PPAR7 was less expressed in melanoma than in normal skin. Transcriptornic profiling of metastatic melanoma cells in which PPAR7 was pharmacologically modulated revealed an association with epithelial-to-mesenchymal transition, though the functional relevance of this finding remains to be determined. Collectively, our results suggests that PPAR7 activity in melanoma is highly complex and that a straightforward picture of PPAR7's role in this skin cancer is difficult to draw. In this study, we also provided compelling evidence that thioredoxin interacting protein (TXNIP) is, in melanoma, a bona fide PPAR7 target gene, the expression of which is repressed by PPAR7 activation. Although TXNIP is mostly known as an inhibitor of the major antioxidant thioredoxin, it has demonstrated a range of biological functions and is generally considered as a tumor suppressor gene. Consistently, we found that TXNIP expression is associated with growth arrest of melanoma cells in vitro and that forced expression of TXNIP strongly impairs cell proliferation. Interestingly, we also discovered that TXNIP favors melanoma cell migration while it diminishes their adhesion. Finally, we provided several lines of evidence that TXNIP may regulate these processes at the transcriptional level as well as by direct protein-protein interactions in the plasma membrane. Altogether, our findings suggest that the PPAR7 target TXNIP may be a double-edged sword in melanoma, hindering tumor growth but promoting invasion and dissemination. Experiments to evaluate the net biological outcome of TXNIP modulation in vivo are ongoing. -- Le mélanome cutané est une tumeur maligne agressive des mélanocytes, cellules de l'épiderme qui produisent la mélanine. Ce cancer présente un taux d'incidence élevé dans les pays développés et est grevé d'un pronostic très sombre une fois qu'il a disséminé. Malgré les importants progrès réalisés ces dernières années, aucune thérapie lie s'est encore montrée véritablement efficace contre le mélanome métastatique. Parmi les cibles thérapeutiques potentielles, nombre de groupes de recherche se sont penchés sur les peroxisome proliferator-activated receptors (PPARs). Ces récepteurs - a, ß et 7 - font partie de la famille des récepteurs nucléaires aux hormones, des facteurs de transcription activés par des ligands et dotés d'une multitude de fonctions en sus de la régulation du métabolisme. Ces protéines ont démontré des propriétés anti-tumorales prometteuses dans une large gamme de cellules cancéreuses, y compris le mélanome. Cependant, nous connaissons encore très mal les fonctions des PPARs dans ce cancer de la peau, rendant l'utilité thérapeutique de l'un des isotypes a, ß ou 7 incertaine. Dans ce travail, nous avons montré que les trois isotypes sont exprimés dans les mélanocytes normaux, dans la plupart des lignées de mélanome ainsi que dans des mélanomes primaires et métastatiques; nous avons aussi montré que PPAR/3 et 7 sont actifs sur le plan transcriptionnel dans les mélanocytes normaux et les cellules de mélanome. La rosiglitazone, un agoniste de PPAR7, a démontré des propriétés anti-mélanome essentiellement indépendantes de l'expression de PPAR7, qui semble très variable dans les lignées et les biopsies que nous avons évaluées; de plus, l'expression de PPAR7 n'est pas corrélée avec le stade de la lignée. En accord avec la vision communément admise de PPAR7 comme étant un gène suppresseur de tumeur, nous avons observé dans des échantillons humains que PPAR7 est moins exprimé dans les mélanomes que dans la peau normale. Une étude transcrip- tomique de cellules de mélanome métastatique a révélé que la modulation phar-macologique de PPAR7 est associée avec la transition épithélio-mésenchymateuse, même si la pertinence fonctionnelle de cette trouvaille reste à déterminer. Collec-tivement, ces résultats suggèrent que l'activité de PPAR/y dans le mélanome est hautement complexe et qu'une image claire du rôle de PPAR7 dans ce cancer est difficile à dessiner. Dans cette étude, nous avons également fourni de solides preuves que la thiore-doxin interacting protein (TXNIP) est, dans le mélanome, un gène cible bona fide de PPAR7 dont l'expression est réprimée par l'activation de PPAR7. Bien que TXNIP soit surtout connu comme un inhibiteur de la thiorédoxine -un anti-oxydant majeur - cette protéine a démontré une large gamme de fonctions biologiques et est généralement considérée comme un gène suppresseur de tumeur. En accord avec cette conception, nous avons trouvé que l'expression de TXNIP est associée avec l'arrêt de croissance des cellules de mélanome in vitro et que l'expression forcée de TXNIP freine considérablement la prolifération cellulaire. Nous avons aussi découvert que TXNIP favorise la migration des cellules de mélanome alors qu'elle diminue leur adhésion. Enfin, nous avons obtenu plusieurs preuves que TXNIP pourrait réguler ces processus tant au niveau transcriptionnel que par des interactions protéine-protéine au sein de la membrane plasmique. En conclusion, nos résultats suggèrent que la cible de PPAR7 TXNIP pourrait être une épée à double tranchant dans le mélanome, freinant la croissance tumorale mais favorisant l'invasion et la dissémination. Des expériences permettant d'évaluer l'effet biologique net de la modulation de TXNIP in vivo sont en cours.
Resumo:
Combined prolactin (PRL) and growth hormone (GH) secretion by a single pituitary tumor can occur in approximately 5% of cases. However, in all previously reported patients, combined secretion of both hormones was present at the time of diagnosis. Here we describe a patient initially diagnosed with a pure prolactin-secreting microadenoma, who experienced the progressive apparition of symptomatic autonomous GH secretion while on intermittent long term dopamine agonist therapy. She was operated on, and immunohistochemical analysis of tumor tissue confirmed the diagnosis of pituitary adenoma with uniform co-staining of all cells for both GH and PRL. This patient represents the first documented occurrence of asynchronous development of combined GH and PRL secretion in a pituitary adenoma. Although pathogenic mechanisms implicated remain largely speculative, it emphasizes the need for long term hormonal follow up of patients harboring prolactinomas.
Resumo:
Hypoglycaemia can occur if the endogenous liver glucose output is lower than the glucose uptake in insulin-sensitive and insulin-insensitive tissues. The onset of hypoglycaemia induces the production of counterregulatory hormones such as glucagon, epinephrine, growth hormone and cortisol, and symptoms of neuroglycopenia. The correlation between biological hypoglycaemia and the symptoms associated with low blood sugar is particularly poor in diabetic patients and in patients with suspected postprandial hypoglycaemia. It is important to discriminate between fasting and postprandial hypoglycaemia. Idiopathic postprandial hypoglycaemia should be diagnosed clinically without further laboratory assessment, whereas the etiology of a fasting hypoglycaemia needs to be clarified further by laboratory testing, as it is potentially life-threatening.
Resumo:
While evidence is accumulating that stress-induced glucocorticoid responses help organisms to quickly adjust their physiology and behaviour to life-threatening environmental perturbations, the function and the ecological factors inducing variation in baseline glucocorticoid levels remain poorly understood. In this study we investigated the effects of brood size by experimentally manipulating the number of nestlings per brood and the effect of weather condition on baseline corticosterone levels of nestling Alpine swifts (Apus melba). We also examined the potential negative consequences of an elevation of baseline corticosterone on nestling immunity by correlating corticosterone levels with ectoparasite intensity and the antibody production towards a vaccine. Although nestlings reared in enlarged broods were in poorer condition than nestlings reared in reduced broods, they showed similar baseline corticosterone levels. In contrast, nestling baseline corticosterone levels were higher immediately after cold and rainy episodes with strong winds. Neither nestling infestation rate by ectoparastic flies nor nestling antibody production against a vaccine was correlated with baseline corticosterone levels. Thus, our results suggest that altricial Alpine swift nestlings can quickly modulate baseline corticosterone levels in response to unpredictable variations in meteorological perturbation but not to brood size which may be associated with the degree of sibling competition. Apparently, short-term elevations of baseline corticosterone have no negative effects on nestling immunocompetence.
Resumo:
Adjustment of Na+ balance in extracellular fluids is achieved by regulated Na+ transport involving the amiloride-sensitive epithelial Na+ channel (ENaC) in the distal nephron. In this context, ENaC is controlled by a number of hormones, including vasopressin, which promotes rapid translocation of water and Na+ channels to the plasma membrane and long-term effects on transcription of vasopressin-induced and -reduced transcripts. We have identified a mRNA encoding the deubiquitylating enzyme ubiquitin-specific protease 10 (Usp10), whose expression is increased by vasopressin at both the mRNA and the protein level. Coexpression of Usp10 in ENaC-transfected HEK-293 cells causes a more than fivefold increase in amiloride-sensitive Na+ currents, as measured by whole cell patch clamping. This is accompanied by a three- to fourfold increase in surface expression of alpha- and gamma-ENaC, as shown by cell surface biotinylation experiments. Although ENaC is well known to be regulated by its direct ubiquitylation, Usp10 does not affect the ubiquitylation level of ENaC, suggesting an indirect effect. A two-hybrid screen identified sorting nexin 3 (SNX3) as a novel substrate of Usp10. We show that it is a ubiquitylated protein that is degraded by the proteasome; interaction with Usp10 leads to its deubiquitylation and stabilization. When coexpressed with ENaC, SNX3 increases the channel's cell surface expression, similarly to Usp10. In mCCD(cl1) cells, vasopressin increases SNX3 protein but not mRNA, supporting the idea that the vasopressin-induced Usp10 deubiquitylates and stabilizes endogenous SNX3 and consequently promotes cell surface expression of ENaC
Resumo:
Five functional mammalian facilitated hexose carriers (GLUTs) have been characterized by molecular cloning. By functional expression in heterologous systems, their specificity and affinity for different hexoses have been defined. There are three high-affinity transporters (GLUT-1, GLUT-3 and GLUT-4) and one low-affinity transporter (GLUT-2), and GLUT-5 is primarily a fructose carrier. Because their Michaelis constants (Km) are below the normal blood glucose concentration, the high-affinity transporters function at rates close to maximal velocity. Thus their level of cell surface expression greatly influences the rate of glucose uptake into the cells. In contrast, the rate of glucose uptake by GLUT-2 (Km = 17 mM) increases in parallel with the rise in blood glucose over the physiological concentration range. High-affinity transporters are found in almost every tissue, but their expression is higher in cells with high glycolytic activity. Glut-2, however, is found in tissues carrying large glucose fluxes, such as intestine, kidney, and liver. As an adaptive response to variations in metabolic conditions, the expression of these transporters is regulated by glucose and different hormones. Thus, because of their specific characteristics and regulated expression, the facilitated glucose transporters control fundamental aspects of glucose homeostasis. I review data pertaining to the structure and regulated expression of the glucose carriers present in intestine, kidney, and liver and discuss their role in the control of glucose flux into or out of these different tissues.
Resumo:
Neuropeptide Y (NPY) is present in the brain, the adrenal medulla, and peripheral sympathetic nerves. This peptide is released together with catecholamines during sympathoadrenal activation. It possesses direct vasoconstrictor properties that are not dependent on simultaneous adrenergic activation. Moreover, it potentiates the vascular effect of several stimulatory substances and may contribute to the modulation of blood pressure responsiveness under a number of circumstances. NPY may also be indirectly involved in the control of blood pressure through regulating the release of hormones with well-established actions on the cardiovascular system.
Resumo:
Peptide hormones within the secretin-glucagon family are expressed in endocrine cells of the pancreas and gastrointestinal epithelium and in specialized neurons in the brain, and subserve multiple biological functions, including regulation of growth, nutrient intake, and transit within the gut, and digestion, energy absorption, and energy assimilation. Glucagon, glucagon-like peptide-1, glucagon-like peptide-2, glucose-dependent insulinotropic peptide, growth hormone-releasing hormone and secretin are structurally related peptides that exert their actions through unique members of a structurally related G protein-coupled receptor class 2 family. This review discusses advances in our understanding of how these peptides exert their biological activities, with a focus on the biological actions and structural features of the cognate receptors. The receptors have been named after their parent and only physiologically relevant ligand, in line with the recommendations of the International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR).