230 resultados para trypsin-like serine protease
Resumo:
Autoimmune side effects are frequent in patients with cancer treated with immune checkpoint-targeting antibodies, but are rare with cancer vaccines. Here, we present a case report on a patient with metastatic melanoma who developed pulmonary sarcoid-like granulomatosis following repetitive vaccinations with peptides and CpG. Despite multiple metastases, including one lesion in the brain, the patient is alive and well more than 13 years after the diagnosis of metastatic disease. The strongly activated tumor-specific CD8(+) T cells showed robust long-term memory and effector functions. It is possible that long-term survival and adverse autoimmune events may become more common for vaccines inducing robust anticancer immune responses as were present in this patient. Cancer Immunol Res; 2(12); 1148-53. ©2014 AACR.
Resumo:
Purpose: In this study, we investigated the expression of the gene encoding beta-galactosidase (Glb)-1-like protein 3 (Glb1l3), a member of the glycosyl hydrolase 35 family, during retinal degeneration in the retinal pigment epithelium (RPE)-specific 65-kDa protein knockout (Rpe65(-/-)) mouse model of Leber congenital amaurosis (LCA). Additionally, we assessed the expression of the other members of this protein family, including beta-galactosidase-1 (Glb1), beta-galactosidase-1-like (Glb1l), and beta-galactosidase-1-like protein 2 (Glb1l2).Methods: The structural features of Glb1l3 were assessed using bioinformatic tools. mRNA expression of Glb-related genes was investigated by oligonucleotide microarray, real-time PCR, and reverse transcription (RT) -PCR. The localized expression of Glb1l3 was assessed by combined in situ hybridization and immunohistochemistry.Results: Glb1l3 was the only Glb-related member strongly downregulated in Rpe65(-/-) retinas before the onset and during progression of the disease. Glb1l3 mRNA was only expressed in the retinal layers and the RPE/choroid. The other Glb-related genes were ubiquitously expressed in different ocular tissues, including the cornea and lens. In the healthy retina, expression of Glb1l3 was strongly induced during postnatal retinal development; age-related increased expression persisted during adulthood and aging.Conclusions: These data highlight early-onset downregulation of Glb1l3 in Rpe65-related disease. They further indicate that impaired expression of Glb1l3 is mostly due to the absence of the chromophore 11-cis retinal, suggesting that Rpe65 deficiency may have many metabolic consequences in the underlying neuroretina.
Resumo:
OBJECTIVE: To test the ability of a novel phase-shifting medium (PSM) to provide sustained distension of the uterine cavity and produce saline infusion sonography (SIS)-like images in a simplified contrast ultrasound procedure. DESIGN: Prospective pilot feasibility trial of a new diagnostic procedure, contrast ultrasound. SETTING: Clinical reproductive endocrine and infertility unit of regional teaching hospital. PATIENT(S): Twenty-six asymptomatic infertile women (group I) and 27 women presenting with dysfunctional uterine bleeding (DUB) who were scheduled for exploratory surgery (group II). INTERVENTION(S): All women who were temporarily on oral contraceptive first had a regular pelvic ultrasound followed by the intrauterine instillation of up to 3 mL PSM, using a regular insemination catheter, after which all instruments were removed and a regular ultrasound was performed again. RESULT(S): In all 53 women, intrauterine instillation of 1-3 mL PSM resulted in a 3-7 mm uterine distension, sufficient to produce SIS-like images of the uterine cavity that lasted 7-10 min. Contrast ultrasound revealed an endometrial polyp in 3 asymptomatic women of group I. In group II. 12 of 14 women (86%) whose vaginal ultrasound were positive or dubious had positive findings with contrast ultrasound; 9 of 12 patients whose vaginal ultrasounds were negative also had positive contrast ultrasound findings. All the positive and negative findings of contrast ultrasound made in group II were confirmed anatomically (sensitivity and specificity of 100%), whereas the correlation for standard vaginal ultrasound was markedly lower at 57.1% and 85.7%, respectively. Most patients (46 of 53) reported no discomfort during or after the procedure, and 7 women described the procedure as mildly uncomfortable. CONCLUSION(S): Contrast ultrasound, a novel simple diagnostic procedure conducted after intrauterine instillation of 1-3 mL PSM using a simple plastic catheter, delivered SIS-quality images in asymptomatic (group I) and symptomatic (group II) patients while retaining the simplicity of standard ultrasound. We therefore foresee broad application of contrast ultrasound for sensitive and specific assessment for uterine pathologies in the physician's office.
Resumo:
The effect of exendin-(9-39), a described antagonist of the glucagon-like peptide-1 (GLP-1) receptor, was evaluated on the formation of cAMP- and glucose-stimulated insulin secretion (GSIS) by the conditionally immortalized murine betaTC-Tet cells. These cells have a basal intracellular cAMP level that can be increased by GLP-1 with an EC50 of approximately 1 nM and can be decreased dose dependently by exendin-(9-39). This latter effect was receptor dependent, as a beta-cell line not expressing the GLP-1 receptor was not affected by exendin-(9-39). It was also not due to the endogenous production of GLP-1, because this effect was observed in the absence of detectable preproglucagon messenger RNA levels and radioimmunoassayable GLP-1. Importantly, GSIS was shown to be sensitive to this basal level of cAMP, as perifusion of betaTC-Tet cells in the presence of exendin-(9-39) strongly reduced insulin secretion. This reduction of GSIS, however, was observed only with growth-arrested, not proliferating, betaTC-Tet cells; it was also seen with nontransformed mouse beta-cells perifused in similar conditions. These data therefore demonstrated that 1) exendin-(9-39) is an inverse agonist of the murine GLP-1 receptor; 2) the decreased basal cAMP levels induced by this peptide inhibit the secretory response of betaTC-Tet cells and mouse pancreatic islets to glucose; 3) as this effect was observed only with growth-arrested cells, this indicates that the mechanism by which cAMP leads to potentiation of insulin secretion is different in proliferating and growth-arrested cells; and 4) the presence of the GLP-1 receptor, even in the absence of bound peptide, is important for maintaining elevated intracellular cAMP levels and, therefore, the glucose competence of the beta-cells.
Resumo:
Since the first reports of induction of adipose-derived stem cells (ASC) into neuronal and glial cell phenotypes, expectations have increased regarding their use in tissue engineering applications for nerve repair. Cell adhesion to extracellular matrix (ECM) is a basic feature of survival, differentiation, and migration of Schwann cells (SC) during nerve regeneration, and fibronectin and laminin are two key molecules of this process. Interaction between ECM and SC-like differentiated ASC (dASC) could potentially improve the neurotrophic potential of the stem cells. We have investigated the effect of ECM molecules on SC-like dASC in terms of proliferation, adhesion, and cell viability. Fibronectin and laminin did not affect the proliferation of dASC when compared with cell adherent tissue culture plastic, but significantly improved viability and cell attachment when dASC were exposed to apoptotic conditions. To assess the influence of the ECM molecules on dASC neurotrophic activity, dASC were seeded onto ECM-coated culture inserts suspended above dorsal root ganglia (DRG) sensory neurons. Neurite outgrowth of DRG neurons was enhanced when dASC were seeded on fibronectin and laminin when compared with controls. When DRG neurons and dASC were in direct contact on the various surfaces there was significantly enhanced neurite outgrowth and coculture with laminin-conditioned dASC produced the longest neurites. Compared with primary SCs, dASC grown on laminin produced similar levels of neurite outgrowth in the culture insert experiments but neurite length was shorter in the direct contact groups. Anti β1 integrin blocking antibody could inhibit baseline and dASC evoked neurite elongation but had no effect on outgrowth mediated by laminin-conditioned dASC. ECM molecules had no effect on the levels of nerve growth factor and brain-derived neurotrophic factor secretion from dASC. The results of the study suggest that ECM molecules can significantly improve the potential of dASC for nerve regeneration.
Resumo:
Abstract: The genesis of the cardiac action potential, which accounts for the cardiac contraction, is due to the sodium current INa mediated by the voltage-gated sodium channel Nav1.5. Several cardiac arrhythmias such as the Brugada syndrome are known te be caused by mutations in SCN5A, the gene encoding Nav1.5. Studies of these mutations allowed a better understanding of biophysical and functional properties of Nav1.5. However, only few investigations have been performed in order to understand the regulation of Nav1.5. During my thesis, I investigated different mechanisms of regulation of Nav1.5 using a heterologous expression system, HEK293 cells, coupled with a technique of sodium current recording: the patch clamp in whole cell configuration. In previous studies it has been shown that an enzyme of the Nedd4 family (Nedd4-2) regulates an epithelial sodium channel via the interaction with PY-motifs present in the latter. Interestingly, Nav1.5 contains a similar PY-motif, which motivated us to study the role of Nedd4-2 expressed in heart for the regulation of Nav1.5. In a second study, we investigated the implication of two Nav1.5 mutants, which were either less functional or net functional (Nav1.5 R535X and Nav1.5 L325R respectively) implied in the genesis of the Brugada syndrome by fever. Our results established two mechanisms implied in Nav1.5 regulation. The first one implies that following the interaction between the PY-motif of Nav1.5 and Nedd4- 2 Nav1.5 is ubiquitinated by Nedd4-2. This ubiquitination leads to the internalization of Nav1 .5. The second mechanism is a phenomenon called the "dominant negative" effect of Nav1.5 L325R on Nay1.5 where the decrease of 'Na is potentially due to the retention of Nav1.5 by Nav1.5 L325R in an undefined intracellular compartment. These studies defined two mechanisms of Nav1.5 regulation, which could play an important role for the genesis of cardiac arrhythmias where molecular processes are still poorly understood. Résumé La genèse du potentiel d'action cardiaque, permettant la contraction cardiaque, est due au courant sodique INa issu des canaux sodiques cardiaques dépendants du voltage Nav1.5. Nombreuses arythmies cardiaques telles que le syndrome de Brugada sont connues pour être liées à des mutations du gène SCN5A, codant pour Nav1.5. L'étude de ces mutations a permis une meilleure compréhension des propriétés structurelles et fonctionnelles de Nav1.5 et leurs implications dans la genèse de ces pathologies. Néanmoins peu d'études ont été menées afin de comprendre les mécanismes de régulation de Nav1.5. Mon travail de thèse a consisté à étudier des mécanismes de régulation de Nav1.5 en utilisant un système d'expression hétérologue, les cellules HEK293, couplé à une technique d'enregistrement des courants sodiques, le "patch clamp" en configuration cellule entière. La présence sur Nav1.5 d'un motif-PY similaire à ceux nécessaires pour la régulation d'un canal épithélial sodique par une enzyme de la famille de Nedd4, nous a amenée à étudier le rôle de ces ubiquitine-ligases, en particulier Nedd4-2, dans la régulation de Nav1.5. La seconde étude s'est intéressée aux conséquences de deux mutations de SCN5A codant pour deux mutants peu ou pas fonctionnels (Nav1.5 L325R et Nav1.5 R535X respectivement) retrouvées chez des patients présentant un syndrome de Brugada exacerbé par un état fébrile. Nos résultats ont permis d'établir deux mécanismes de régulation de Nav1.5 L'un par Nedd4-2 qui implique rubiquitination de Nav1.5 par cette ligase suite à l'interaction entre le motif-PY de Nav1.5 et Nedd4-2. Cette modification déclenche l'internalisation du canal impliquée dans la diminution d'INa. Le second mécanisme quant à lui est un effet "dominant négatif" de Nav1.5 L325R sur Nav1.5 aboutissant à une diminution d'INa suite à la séquestration intracellulaire potentielle de Nav1.5 par Nav1.5 L325R. Ces études ont mis en évidence deux mécanismes de régulation de Nav1.5 pouvant jouer un rôle majeur dans la genèse et/ou l'accentuation des arythmies cardiaques dont les processus moléculaires au sein des cardiomyocytes, impliquant des modifications du courant sodiques, sont encore mal compris. Résumé destiné à un large public La dépolarisation électrique de la membrane des cellules cardiaques permet la contraction du coeur. La génèse de cette activité électrique est due au courant sodique issu d'un type de canal à sodium situé dans la membrane des cellules cardiaques. De nombreuses pathologies provoquant des troubles du rythme cardiaque sont issues de mutations du gène qui code pour ce canal à sodium. Ces canaux mutants, entrainant diverses pathologies cardiaques telles que le syndrome de Brugada, ont été largement étudiées. Néanmoins, peu de travaux ont été réalisés sur les mécanismes de régulation de ce canal à sodium non muté. Mon travail de thèse a consisté à étudier certains des mécanismes de régulation de ce canal à sodium en utilisant une technique permettant l'enregistrement des courants sodiques issus de l'expression de ces canaux à sodium à la membrane de cellules mammifères. La présence sur ce canal à sodium d'une structure spécifique, similaire à celle nécessaire pour la régulation d'un canal épithélial à sodium par une enzyme appelée Nedd4-2, nous a amenée à étudier le rôle de cette enzyme dans la régulation de ce canal à sodium. La seconde étude s'est intéressée aux rôles de deux mutations du gène codant pour ce canal à sodium retrouvées chez des patients présentant un syndrome de Brugada exacerbé par la fièvre. Nos résultats nous ont permis d'établir deux mécanismes de régulation de ce canal à sodium diminuant le courant sodique l'un par l'action de l'enzyme Nedd4-2, suite à son interaction avec ce canal, qui modifie ce canal à sodium (ubiquitination) diminuant de ce fait la densité membranaire du canal. L'autre par un mécanisme suggérant un effet négatif de l'un des canaux mutants sur l'expression à la membrane du canal à sodium non muté. Ces études ont mis en évidence deux mécanismes de régulation de ce canal à sodium pouvant jouer un rôle majeur dans la genèse et/ou l'accentuation des troubles du rythme cardiaques dont les mécanismes cellulaires sont encore incompris.
Resumo:
Leukocyte Elastase Inhibitor (LEI, also called serpin B1) is a protein involved in apoptosis among other physiological processes. We have previously shown that upon cleavage by its cognate protease, LEI is transformed into L-DNase II, a protein with a pro-apoptotic activity. The caspase independent apoptotic pathway, in which L-DNase II is the final effector, interacts with other pro-apoptotic molecules like Poly-ADP-Ribose polymerase (PARP) or Apoptosis Inducing Factor (AIF). The screening of LEI/L-DNase II interactions showed a possible interaction with several members of the BCL-2 family of proteins which are known to have a central role in the regulation of caspase dependent cell death. In this study, we investigated the regulation of LEI/L-DNase II pathway by two members of this family of proteins: BAX and BCL-2, which have opposite effects on cell survival. We show that, in both BHK and HeLa cells, LEI/L-DNase II can interact with BCL-2 and BAX in apoptotic and non-apoptotic conditions. These proteins which are usually thought to be anti-apoptotic and pro-apoptotic respectively, both inhibit the L-DNase II pro-apoptotic activity. These results give further insight in the regulation of caspase-independent pathways and highlight the involvement of the intracellular environment of a given protein in the determinism of its function. They also add a link between caspase-dependent and independent pathways of apoptosis.
Resumo:
A novel monoclonal antibody, M7, is described, that reacts on Western blots with the large subunit of the neurofilament triplet proteins (NF-H) and with striated muscle myosin of Xenopus laevis. Enzymatically digested neurofilament and myosin proteins revealed different immunoreactive peptide fragments on Western blots. Therefore, the antibody must react with immunologically related epitopes common to both proteins. Immunohistochemistry showed staining of large and small axons in CNS and PNS, and nerves could be followed into endplate regions of skeletal muscles. These muscles were characterized by a striated immunostaining of the M-lines. Despite the crossreactivity of M7 with NF-H and muscle myosin, this antibody may be a tool to study innervation of muscle fibers, and to define changes in the neuromuscular organization during early development and metamorphosis of tadpoles.
Resumo:
When competing over parental resources, young animals may be typically selfish to the point of siblicide. This suggests that limited parental resources promote the evolution of sibling competition rather than altruistic or cooperative behaviours. In striking contrast, we show here that in 71% of experimental three-chick broods, nestling barn owls, Tyto alba, gave food to their siblings on average twice per night. This behaviour prevailed in the first-born dominant nestlings rather than the last-born subordinate nestlings. It was also more prevalent in individuals displaying a heritable dark phaeomelanin-based coloration, a typical female-specific plumage trait (owls vary from dark reddish to white, females being on average darker reddish than males). Stealing food items from siblings, which occurred in 81% of the nests, was more frequent in light than dark phaeomelanic dominant nestlings. We suggest that food sharing has evolved in the barn owl because parents store prey items in their nest that can be used by the offspring to feed their nestmates to derive indirect (kin selection) or direct benefits (pseudoreciprocity or by-product mutualism). The cost of feeding siblings may be relatively low for dominant individuals while the indirect genetic benefits could be high given that extrapair paternity is infrequent in this species. Thus, in situations in which young animals have access to more food resources than they currently need, they can altruistically share them with their siblings.
Resumo:
Rho GTPases integrate control of cell structure and adhesion with downstream signaling events. In keratinocytes, RhoA is activated at early times of differentiation and plays an essential function in establishment of cell-cell adhesion. We report here that, surprisingly, Rho signaling suppresses downstream gene expression events associated with differentiation. Similar inhibitory effects are exerted by a specific Rho effector, CRIK (Citron kinase), which is selectively down-modulated with differentiation, thereby allowing the normal process to occur. The suppressing function of Rho/CRIK on differentiation is associated with induction of KyoT1/2, a LIM domain protein gene implicated in integrin-mediated processes and/or Notch signaling. Like activated Rho and CRIK, elevated KyoT1/2 expression suppresses differentiation. Thus, Rho signaling exerts an unexpectedly complex role in keratinocyte differentiation, which is coupled with induction of KyoT1/2, a LIM domain protein gene with a potentially important role in control of cell self renewal.
Resumo:
BACKGROUND: Insulin-like growth factor-I (IGF-I) and C-reactive protein (CRP) may be positively associated with the risk of epithelial ovarian cancer (EOC) but no previous studies have investigated their associations with non-epithelial ovarian cancers (NEOC). METHODS: A case-control study was nested within the Finnish Maternity Cohort. Case subjects were 58 women diagnosed with sex cord-stromal tumors (SCST) and 30 with germ cell tumors (GCT) after recruitment. Control subjects (144 for SCST and 74 for GCT) were matched for age, parity, and date of blood donation of the index case. RESULTS: Doubling of IGF-I concentration was not related to maternal risk of either SCST (OR 0.97, 95% CI 0.58-1.62) or GCT (OR 1.13, 95% CI 0.51-2.51). Similarly, doubling of CRP concentrations was not related to maternal risk of either SCST (OR 1.10, 95% CI 0.85-1.43) or GCT (OR 0.93, 95% CI 0.68-1.28). CONCLUSIONS: Pre-diagnostic IGF-I and CRP concentrations during the first trimester of pregnancy were not associated with increased risk of NEOC in the mother. Risk factors for NEOC may differ from those of EOC.
Resumo:
The therapeutic activity of selective serotonin (5-HT) reuptake inhibitors (SSRIs) relies on long-term adaptation at pre- and post-synaptic levels. The sustained administration of SSRIs increases the serotonergic neurotransmission in response to a functional desensitization of the inhibitory 5-HT1A autoreceptor in the dorsal raphe. At nerve terminal such as the hippocampus, the enhancement of 5-HT availability increases brain-derived neurotrophic factor (BDNF) synthesis and signaling, a major event in the stimulation of adult neurogenesis. In physiological conditions, BDNF would be expressed at functionally relevant levels in neurons. However, the recent observation that SSRIs upregulate BDNF mRNA in primary cultures of astrocytes strongly suggest that the therapeutic activity of antidepressant drugs might result from an increase in BDNF synthesis in this cell type. In this study, by overexpressing BDNF in astrocytes, we balanced the ratio between astrocytic and neuronal BDNF raising the possibility that such manipulation could positively reverberate on anxiolytic-/antidepressant-like activities in transfected mice. Our results indicate that BDNF overexpression in hippocampal astrocytes produced anxiolytic-/antidepressant-like activity in the novelty suppressed feeding in relation with the stimulation of hippocampal neurogenesis whereas it did not potentiate the effects of the SSRI fluoxetine on these parameters. Moreover, overexpressing BDNF revealed the anxiolytic-like activity of fluoxetine in the elevated plus maze while attenuating 5-HT neurotransmission in response to a blunted downregulation of the 5-HT1A autoreceptor. These results emphasize an original role of hippocampal astrocytes in the synthesis of BDNF, which can act through neurogenesis-dependent and -independent mechanisms to regulate different facets of anxiolytic-like responses.
Resumo:
The serine/threonine kinase WNK3 and the ubiquitin-protein ligase NEDD4-2 are key regulators of the thiazide-sensitive Na+-Cl- cotransporter (NCC), WNK3 as an activator and NEDD2-4 as an inhibitor. Nedd4-2 was identified as an interacting partner of WNK3 through a glutathione-S-transferase pull-down assay using the N-terminal domain of WNK3, combined with LC-MS/MS analysis. This was validated by coimmunoprecipitation of WNK3 and NEDD4-2 expressed in HEK293 cells. Our data also revealed that the interaction between Nedd4-2 and WNK3 does not involve the PY-like motif found in WNK3. The level of WNK3 ubiquitylation did not change when NEDD4-2 was expressed in HEK293 cells. Moreover, in contrast to SGK1, WNK3 did not phosphorylate NEDD4-2 on S222 or S328. Coimmunoprecipitation assays showed that WNK3 does not regulate the interaction between NCC and NEDD4-2. Interestingly, in Xenopus laevis oocytes, WNK3 was able to recover the SGK1-resistant NEDD4-2 S222A/S328A-mediated inhibition of NCC and further activate NCC. Furthermore, elimination of the SPAK binding site in the kinase domain of WNK3 (WNK3-F242A, which lacks the capacity to bind the serine/threonine kinase SPAK) prevented the WNK3 NCC-activating effect, but not the Nedd4-2-inhibitory effect. Together, these results suggest that a novel role for WNK3 on NCC expression at the plasma membrane, an effect apparently independent of the SPAK kinase and the aldosterone-SGK1 pathway.