146 resultados para stiffness tomography
Resumo:
Electrical resistivity tomography (ERT) is a well-established method for geophysical characterization and has shown potential for monitoring geologic CO2 sequestration, due to its sensitivity to electrical resistivity contrasts generated by liquid/gas saturation variability. In contrast to deterministic inversion approaches, probabilistic inversion provides the full posterior probability density function of the saturation field and accounts for the uncertainties inherent in the petrophysical parameters relating the resistivity to saturation. In this study, the data are from benchtop ERT experiments conducted during gas injection into a quasi-2D brine-saturated sand chamber with a packing that mimics a simple anticlinal geological reservoir. The saturation fields are estimated by Markov chain Monte Carlo inversion of the measured data and compared to independent saturation measurements from light transmission through the chamber. Different model parameterizations are evaluated in terms of the recovered saturation and petrophysical parameter values. The saturation field is parameterized (1) in Cartesian coordinates, (2) by means of its discrete cosine transform coefficients, and (3) by fixed saturation values in structural elements whose shape and location is assumed known or represented by an arbitrary Gaussian Bell structure. Results show that the estimated saturation fields are in overall agreement with saturations measured by light transmission, but differ strongly in terms of parameter estimates, parameter uncertainties and computational intensity. Discretization in the frequency domain (as in the discrete cosine transform parameterization) provides more accurate models at a lower computational cost compared to spatially discretized (Cartesian) models. A priori knowledge about the expected geologic structures allows for non-discretized model descriptions with markedly reduced degrees of freedom. Constraining the solutions to the known injected gas volume improved estimates of saturation and parameter values of the petrophysical relationship. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
PURPOSE: To characterize perifoveal intraretinal cavities observed around full-thickness macular holes (MH) using en face optical coherence tomography and to establish correlations with histology of human and primate maculae. DESIGN: Retrospective nonconsecutive observational case series. METHODS: Macular en face scans of 8 patients with MH were analyzed to quantify the areas of hyporeflective spaces, and were compared with macular flat mounts and sections from 1 normal human donor eye and 2 normal primate eyes (Macaca fascicularis). Immunohistochemistry was used to study the distribution of glutamine synthetase, expressed by Müller cells, and zonula occludens-1, a tight-junction protein. RESULTS: The mean area of hyporeflective spaces was lower in the inner nuclear layer (INL) than in the complex formed by the outer plexiform (OPL) and the Henle fiber layers (HFL): 5.0 × 10(-3) mm(2) vs 15.9 × 10(-3) mm(2), respectively (P < .0001, Kruskal-Wallis test). In the OPL and HFL, cavities were elongated with a stellate pattern, whereas in the INL they were rounded and formed vertical cylinders. Immunohistochemistry confirmed that Müller cells followed a radial distribution around the fovea in the frontal plane and a "Z-shaped" course in the axial plane, running obliquely in the OPL and HFL and vertically in the inner layers. In addition, zonula occludens-1 co-localized with Müller cells within the complex of OPL and HFL, indicating junctions in between Müller cells and cone axons. CONCLUSION: The dual profile of cavities around MHs correlates with Müller cell morphology and is consistent with the hypothesis of intra- or extracellular fluid accumulation along these cells.
Inactive Matrix Gla-Protein is associated with arterial stiffness in an adult population-based study
Resumo:
Increased pulse wave velocity (PWV) is a marker of aortic stiffness and an independent predictor of mortality. Matrix Gla-protein (MGP) is a vascular calcification inhibitor that needs vitamin K to be activated. Inactive MGP, known as desphospho-uncarboxylated MGP (dp-ucMGP), can be measured in plasma and has been associated with various cardiovascular markers, cardiovascular outcomes, and mortality. In this study, we hypothesized that high levels of dp-ucMGP are associated with increased PWV. We recruited participants via a multicenter family-based cross-sectional study in Switzerland. Dp-ucMGP was quantified in plasma by sandwich ELISA. Aortic PWV was determined by applanation tonometry using carotid and femoral pulse waveforms. Multiple regression analysis was performed to estimate associations between PWV and dp-ucMGP adjusting for age, renal function, and other cardiovascular risk factors. We included 1001 participants in our analyses (475 men and 526 women). Mean values were 7.87±2.10 m/s for PWV and 0.43±0.20 nmol/L for dp-ucMGP. PWV was positively associated with dp-ucMGP both before and after adjustment for sex, age, body mass index, height, systolic and diastolic blood pressure (BP), heart rate, renal function, low- and high-density lipoprotein, glucose, smoking status, diabetes mellitus, BP and cholesterol lowering drugs, and history of cardiovascular disease (P≤0.01). In conclusion, high levels of dp-ucMGP are independently and positively associated with arterial stiffness after adjustment for common cardiovascular risk factors, renal function, and age. Experimental studies are needed to determine whether vitamin K supplementation slows arterial stiffening by increasing MGP carboxylation.
Resumo:
BACKGROUND: During the last decade, the management of blunt hepatic injury has considerably changed. Three options are available as follows: nonoperative management (NOM), transarterial embolization (TAE), and surgery. We aimed to evaluate in a systematic review the current practice and outcomes in the management of Grade III to V blunt hepatic injury. METHOD: The MEDLINE database was searched using PubMed to identify English-language citations published after 2000 using the key words blunt, hepatic injury, severe, and grade III to V in different combinations. Liver injury was graded according to the American Association for the Surgery of Trauma classification on computed tomography (CT). Primary outcome analyzed was success rate in intention to treat. Critical appraisal of the literature was performed using the validated National Institute for Health and Care Excellence "Quality Assessment for Case Series" system. RESULTS: Twelve articles were selected for critical appraisal (n = 4,946 patients). The median quality score of articles was 4 of 8 (range, 2-6). Overall, the median Injury Severity Score (ISS) at admission was 26 (range, 0.6-75). A median of 66% (range, 0-100%) of patients was managed with NOM, with a success rate of 94% (range, 86-100%). TAE was used in only 3% of cases (range, 0-72%) owing to contrast extravasation on CT with a success rate of 93% (range, 81-100%); however, 9% to 30% of patients required a laparotomy. Thirty-one percent (range, 17-100%) of patients were managed with surgery owing to hemodynamic instability in most cases, with 12% to 28% requiring secondary TAE to control recurrent hepatic bleeding. Mortality was 5% (range, 0-8%) after NOM and 51% (range, 30-68%) after surgery. CONCLUSION: NOM of Grade III to V blunt hepatic injury is the first treatment option to manage hemodynamically stable patients. TAE and surgery are considered in a highly selective group of patients with contrast extravasation on CT or shock at admission, respectively. Additional standardization of the reports is necessary to allow accurate comparisons of the various management strategies. LEVEL OF EVIDENCE: Systematic review, level IV.
Resumo:
Postmortem imaging techniques, especially postmortem computed tomography, have become integral tools in forensic investigations. Multiphase postmortem computed tomography angiography (MPMCTA) visualizes the vascular system in detail and makes it possible to evaluate the perfusion of even the smallest vessels. Although the technique has been well described for adults, no pediatric cases have been reported and no pediatric protocol has been established for this type of investigation. We present the case a 7-year-old child for which we used a previously described MPMCTA protocol and adapted values of perfusion, with the same technical equipment as for adult cases. Our main objective was to propose a perfusion protocol adapted for the investigation of infants and children. Moreover, we discuss both the difficulties that we encountered and possible ways to further improve the investigation of pediatric cases by MPMCTA.
Resumo:
PURPOSE: Postmortem computed tomography angiography (PMCTA) was introduced into forensic investigations a few years ago. It provides reliable images that can be consulted at any time. Conventional autopsy remains the reference standard for defining the cause of death, but provides only limited possibility of a second examination. This study compares these two procedures and discusses findings that can be detected exclusively using each method. MATERIALS AND METHODS: This retrospective study compared radiological reports from PMCTA to reports from conventional autopsy for 50 forensic autopsy cases. Reported findings from autopsy and PMCTA were extracted and compared to each other. PMCTA was performed using a modified heart-lung machine and the oily contrast agent Angiofil® (Fumedica AG, Muri, Switzerland). RESULTS: PMCTA and conventional autopsy would have drawn similar conclusions regarding causes of death. Nearly 60 % of all findings were visualized with both techniques. PMCTA demonstrates a higher sensitivity for identifying skeletal and vascular lesions. However, vascular occlusions due to postmortem blood clots could be falsely assumed to be vascular lesions. In contrast, conventional autopsy does not detect all bone fractures or the exact source of bleeding. Conventional autopsy provides important information about organ morphology and remains the only way to diagnose a vital vascular occlusion with certitude. CONCLUSION: Overall, PMCTA and conventional autopsy provide comparable findings. However, each technique presents advantages and disadvantages for detecting specific findings. To correctly interpret findings and clearly define the indications for PMCTA, these differences must be understood.
Resumo:
PURPOSE: Iterative algorithms introduce new challenges in the field of image quality assessment. The purpose of this study is to use a mathematical model to evaluate objectively the low contrast detectability in CT. MATERIALS AND METHODS: A QRM 401 phantom containing 5 and 8 mm diameter spheres with a contrast level of 10 and 20 HU was used. The images were acquired at 120 kV with CTDIvol equal to 5, 10, 15, 20 mGy and reconstructed using the filtered back-projection (FBP), adaptive statistical iterative reconstruction 50% (ASIR 50%) and model-based iterative reconstruction (MBIR) algorithms. The model observer used is the Channelized Hotelling Observer (CHO). The channels are dense difference of Gaussian channels (D-DOG). The CHO performances were compared to the outcomes of six human observers having performed four alternative forced choice (4-AFC) tests. RESULTS: For the same CTDIvol level and according to CHO model, the MBIR algorithm gives the higher detectability index. The outcomes of human observers and results of CHO are highly correlated whatever the dose levels, the signals considered and the algorithms used when some noise is added to the CHO model. The Pearson coefficient between the human observers and the CHO is 0.93 for FBP and 0.98 for MBIR. CONCLUSION: The human observers' performances can be predicted by the CHO model. This opens the way for proposing, in parallel to the standard dose report, the level of low contrast detectability expected. The introduction of iterative reconstruction requires such an approach to ensure that dose reduction does not impair diagnostics.
Resumo:
Diagnosis of pleural plaques (PPs) is commonly straightforward, especially when a typical appearance is observed in a context of previous asbestos exposure. Nevertheless, numerous causes of focal pleural thickening may be seen in routine practice. They may be related to normal structures, functional pleural thickening, previous tuberculosis, pleural metastasis, silicosis or other rarer conditions. An application of a rigorous technical approach as well as a familiarity with loco-regional anatomy and the knowledge of typical aspects of PP are required. Indeed, false-positive or false-negative results may engender psychological and medico-legal consequences or can delay diagnosis of malignant pleural involvement. Correct recognition of PPs is crucial, as they may also be an independent risk factor for mortality from lung cancer in asbestos-exposed workers particularly in either smokers or former/ex-smokers. Finally, the presence of PP(s) may help in considering asbestosis as a cause of interstitial lung disease predominating in the subpleural area of the lower lobes. The aim of this pictorial essay is to provide a brief reminder of the normal anatomy of the pleura and its surroundings as well as the various aspects of PPs. Afterwards, the common pitfalls encountered in PP diagnosis will be emphasized and practical clues to differentiate actual plaque and pseudoplaque will be concisely described.
Resumo:
X-ray medical imaging is increasingly becoming three-dimensional (3-D). The dose to the population and its management are of special concern in computed tomography (CT). Task-based methods with model observers to assess the dose-image quality trade-off are promising tools, but they still need to be validated for real volumetric images. The purpose of the present work is to evaluate anthropomorphic model observers in 3-D detection tasks for low-contrast CT images. We scanned a low-contrast phantom containing four types of signals at three dose levels and used two reconstruction algorithms. We implemented a multislice model observer based on the channelized Hotelling observer (msCHO) with anthropomorphic channels and investigated different internal noise methods. We found a good correlation for all tested model observers. These results suggest that the msCHO can be used as a relevant task-based method to evaluate low-contrast detection for CT and optimize scan protocols to lower dose in an efficient way.