433 resultados para sedimentary evolution
Resumo:
Barraclough and co-workers (in a paper published in 1996) observed that there was a significant positive correlation between the rate of evolution of the rbcL chloroplast gene within families of flowering plants and the number of species in those families. We tested three additional data sets of our own (based on both plastid and nuclear genes) and used methods designed specifically for the comparison of sister families (based on random speciation and extinction). We show that, over all sister groups, the correlation between the rate of gene evolution and an increased diversity is not always present. Despite tending towards a positive association, the observation of individual probabilities presents a U-shaped distribution of association (i.e. it can be either significantly positive or negative). We discuss the influence of both phylogenetic sampling and applied taxonomies on the results.
Resumo:
Divergence of protein sequences and gene expression patterns are two fundamental mechanisms that generate organismal diversity. Here, we have used genome and transcriptome data from eight mammals and one bird to study the positive correlation of these two processes throughout mammalian evolution. We demonstrate that the correlation is stable over time and most pronounced in neural tissues, which indicates that it is the result of strong negative selection. The correlation is not driven by genes with specific functions and may instead best be viewed as an evolutionary default state, which can nevertheless be evaded by certain gene types. In particular, genes with developmental and neural functions are skewed toward changes in gene expression, consistent with selection against pleiotropic effects associated with changes in protein sequences. Surprisingly, we find that the correlation between expression divergence and protein divergence is not explained by between-gene variation in expression level, tissue specificity, protein connectivity, or other investigated gene characteristics, suggesting that it arises independently of these gene traits. The selective constraints on protein sequences and gene expression patterns also fluctuate in a coordinate manner across phylogenetic branches: We find that gene-specific changes in the rate of protein evolution in a specific mammalian lineage tend to be accompanied by similar changes in the rate of expression evolution. Taken together, our findings highlight many new aspects of the correlation between protein divergence and expression divergence, and attest to its role as a fundamental property of mammalian genome evolution.
Resumo:
Using game theory, we developed a kin-selection model to investigate the consequences of local competition and inbreeding depression on the evolution of natal dispersal. Mating systems have the potential to favor strong sex biases in dispersal because sex differences in potential reproductive success affect the balance between local resource competition and local mate competition. No bias is expected when local competition equally affects males and females, as happens in monogamous systems and also in polygynous or promiscuous ones as long as female fitness is limited by extrinsic factors (breeding resources). In contrast, a male-biased dispersal is predicted when local mate competition exceeds local resource competition, as happens under polygyny/promiscuity when female fitness is limited by intrinsic factors (maximal rate of processing resources rather than resources themselves). This bias is reinforced by among-sex interactions: female philopatry enhances breeding opportunities for related males, while male dispersal decreases the chances that related females will inbreed. These results meet empirical patterns in mammals: polygynous/promiscuous species usually display a male-biased dispersal, while both sexes disperse in monogamous species. A parallel is drawn with sex-ratio theory, which also predicts biases toward the sex that suffers less from local competition. Optimal sex ratios and optimal sex-specific dispersal show mutual dependence, which argues for the development of coevolution models.
Resumo:
In colonies of social Hymenoptera (which include all ants, as well as some wasp and bee species), only queens reproduce whereas workers generally perform other tasks. The evolution of worker's reproductive altruism can be explained by kin selection, which states that workers can indirectly transmit copies of their genes by helping the reproduction of relatives. The relatedness between queens and workers may however be low, particularly when there are multiple queens per colony, which limits the transmission of copies of workers genes and increases potential conflicts between colony members. In this thesis, we investigated the link between social structure variations and conflicts, and explored the mechanisms involved in variation of colony queen number in ants. According to kin selection, workers should rear the brood they are most related to. In social Hymenoptera, males are haploid whereas females (workers and queens) are diploid. As a result, workers can be up to three times more related to females than males in some colonies, where they should consequently favour the production of females. In contrast, queens are equally related to daughters and sons in all types of colonies and therefore should favour a balanced sex ratio. In a meta-analysis across all studies of social Hymenoptera, we showed that colony sex ratio is generally largely influenced by workers. Hence, the evolution of social structures where queens and workers are equally related to males and females may contribute to decrease the conflict between the two castes over colony sex ratio. Another conflict between queens and workers can occur over male production. Many species contain workers that still have the ability to lay haploid eggs. In some social structures, workers are on average more related to sons of queens than to sons of other workers. As a result, workers should eliminate worker-laid eggs to favour queen-laid eggs. We showed that in the ant Formica selysi, workers eliminate more worker-laid than queen-laid eggs, independently of colony social structure. These results therefore suggest that worker policing can evolve independently from relatedness, potentially because of costs of worker reproduction at the colony-level. Colony queen number is a key parameter that influences relatedness between group members. Queen body size is generally linked to the success of independent colony foundation by single queens and may influence the number of queens in the new colony. In the ant F. selysi, single-queen colonies produce larger queens than multiple-queen colonies. We showed that this association results from genes or maternal effects transmitted to the eggs. However, we also found that queens produced in colonies of the two social forms did not differ in their general ability to found new colonies independently. Queen body size may also influence queen dispersal ability and constrain small queens to be re-adopted in their original nest after mating at proximity. We tested the acceptance of new queens in another ant species, Formica paralugubris, which has numerous queens per colony. Our results show that workers do not discriminate between nestmate and foreign queens, and more generally accept new queens at a limited rate. To conclude, this thesis shows that mechanisms influencing variation in colony queen number and the influence of these changes on conflict resolution are complex. Data gathered in this thesis therefore constitute a solid background for further research on the evolution and the maintenance of complex organisations in insect societies.
Resumo:
PURPOSE: To compare the apparent diffusion coefficient (ADC) values of malignant liver lesions on diffusion-weighted MRI (DWI) before and after successful radiofrequency ablation (RF ablation). MATERIALS AND METHODS: Thirty-two patients with 43 malignant liver lesions (23/20: metastases/hepatocellular carcinomas (HCC)) underwent liver MRI (3.0T) before (<1month) and after RF ablation (at 1, 3 and 6months) using T2-, gadolinium-enhanced T1- and DWI-weighted MR sequences. Jointly, two radiologists prospectively measured ADCs for each lesion by means of two different regions of interest (ROIs), first including the whole lesion and secondly the area with the visibly most restricted diffusion (MRDA) on ADC map. Changes of ADCs were evaluated with ANOVA and Dunnett tests. RESULTS: Thirty-one patients were successfully treated, while one patient was excluded due to focal recurrence. In metastases (n=22), the ADC in the whole lesion and in MRDA showed an up-and-down evolution. In HCC (n=20), the evolution of ADC was more complex, but with significantly higher values (p=0.013) at 1 and 6months after RF ablation. CONCLUSION: The ADC values of malignant liver lesions successfully treated by RF ablation show a predictable evolution and may help radiologists to monitor tumor response after treatment.
Resumo:
The great majority of plant species in the tropics require animals to achieve pollination, but the exact role of floral signals in attraction of animal pollinators is often debated. Many plants provide a floral reward to attract a guild of pollinators, and it has been proposed that floral signals of non-rewarding species may converge on those of rewarding species to exploit the relationship of the latter with their pollinators. In the orchid family (Orchidaceae), pollination is almost universally animal-mediated, but a third of species provide no floral reward, which suggests that deceptive pollination mechanisms are prevalent. Here, we examine floral colour and shape convergence in Neotropical plant communities, focusing on certain food-deceptive Oncidiinae orchids (e.g. Trichocentrum ascendens and Oncidium nebulosum) and rewarding species of Malpighiaceae. We show that the species from these two distantly related families are often more similar in floral colour and shape than expected by chance and propose that a system of multifarious floral mimicry-a form of Batesian mimicry that involves multiple models and is more complex than a simple one model-one mimic system-operates in these orchids. The same mimetic pollination system has evolved at least 14 times within the species-rich Oncidiinae throughout the Neotropics. These results help explain the extraordinary diversification of Neotropical orchids and highlight the complexity of plant-animal interactions.
Resumo:
BACKGROUND: Evolutionary analysis may serve as a useful approach to identify and characterize host defense and viral proteins involved in genetic conflicts. We analyzed patterns of coding sequence evolution of genes with known (TRIM5alpha and APOBEC3G) or suspected (TRIM19/PML) roles in virus restriction, or in viral pathogenesis (PPIA, encoding Cyclophilin A), in the same set of human and non-human primate species. RESULTS AND CONCLUSION: This analysis revealed previously unidentified clusters of positively selected sites in APOBEC3G and TRIM5alpha that may delineate new virus-interaction domains. In contrast, our evolutionary analyses suggest that PPIA is not under diversifying selection in primates, consistent with the interaction of Cyclophilin A being limited to the HIV-1M/SIVcpz lineage. The strong sequence conservation of the TRIM19/PML sequences among primates suggests that this gene does not play a role in antiretroviral defense.
Resumo:
The enzyme glutamate dehydrogenase (GDH) is important for recycling the chief excitatory neurotransmitter, glutamate, during neurotransmission. Human GDH exists in housekeeping and brain-specific isotypes encoded by the genes GLUD1 and GLUD2, respectively. Here we show that GLUD2 originated by retroposition from GLUD1 in the hominoid ancestor less than 23 million years ago. The amino acid changes responsible for the unique brain-specific properties of the enzyme derived from GLUD2 occurred during a period of positive selection after the duplication event.
Resumo:
Like numerous torrents in mountainous regions, the Illgraben creek (canton of Wallis, SW Switzerland) produces almost every year several debris flows. The total area of the active catchment is only 4.7 km², but large events ranging from 50'000 to 400'000 m³ are common (Zimmermann 2000). Consequently, the pathway of the main channel often changes suddenly. One single event can for instance fill the whole river bed and dig new several-meters-deep channels somewhere else (Bardou et al. 2003). The quantification of both, the rhythm and the magnitude of these changes, is very important to assess the variability of the bed's cross section and long profile. These parameters are indispensable for numerical modelling, as they should be considered as initial conditions. To monitor the channel evolution an Optech ILRIS 3D terrestrial laser scanner (LIDAR) was used. LIDAR permits to make a complete high precision 3D model of the channel and its surroundings by scanning it from different view points. The 3D data are treated and interpreted with the software Polyworks from Innovmetric Software Inc. Sequential 3D models allow for the determination of the variation in the bed's cross section and long profile. These data will afterwards be used to quantify the erosion and the deposition in the torrent reaches. To complete the chronological evolution of the landforms, precise digital terrain models, obtained by high resolution photogrammetry based on old aerial photographs, will be used. A 500 m long section of the Illgraben channel was scanned on 18th of August 2005 and on 7th of April 2006. These two data sets permit identifying the changes of the channel that occurred during the winter season. An upcoming scanning campaign in September 2006 will allow for the determination of the changes during this summer. Preliminary results show huge variations in the pathway of the Illgraben channel, as well as important vertical and lateral erosion of the river bed. Here we present the results of a river bank on the left (north-western) flank of the channel (Figure 1). For the August 2005 model the scans from 3 viewpoints were superposed, whereas the April 2006 3D image was obtained by combining 5 separate scans. The bank was eroded. The bank got eroded essentially on its left part (up to 6.3 m), where it is hit by the river and the debris flows (Figures 2 and 3). A debris cone has also formed (Figure 3), which suggests that a part of the bank erosion is due to shallow landslides. They probably occur when the river erosion creates an undercut slope. These geometrical data allow for the monitoring of the alluvial dynamics (i.e. aggradation and degradation) on different time scales and the influence of debris flows occurrence on these changes. Finally, the resistance against erosion of the bed's cross section and long profile will be analysed to assess the variability of these two key parameters. This information may then be used in debris flow simulation.
Resumo:
BACKGROUND: We sought to investigate the relationship between infarct and dyssynchrony post- myocardial infarct (MI), in a porcine model. Mechanical dyssynchrony post-MI is associated with left ventricular (LV) remodeling and increased mortality. METHODS: Cine, gadolinium-contrast, and tagged cardiovascular magnetic resonance (CMR) were performed pre-MI, 9 ± 2 days (early post-MI), and 33 ± 10 days (late post-MI) post-MI in 6 pigs to characterize cardiac morphology, location and extent of MI, and regional mechanics. LV mechanics were assessed by circumferential strain (eC). Electro-anatomic mapping (EAM) was performed within 24 hrs of CMR and prior to sacrifice. RESULTS: Mean infarct size was 21 ± 4% of LV volume with evidence of post-MI remodeling. Global eC significantly decreased post MI (-27 ± 1.6% vs. -18 ± 2.5% (early) and -17 ± 2.7% (late), p < 0.0001) with no significant change in peri-MI and MI segments between early and late time-points. Time to peak strain (TTP) was significantly longer in MI, compared to normal and peri-MI segments, both early (440 ± 40 ms vs. 329 ± 40 ms and 332 ± 36 ms, respectively; p = 0.0002) and late post-MI (442 ± 63 ms vs. 321 ± 40 ms and 355 ± 61 ms, respectively; p = 0.012). The standard deviation of TTP in 16 segments (SD16) significantly increased post-MI: 28 ± 7 ms to 50 ± 10 ms (early, p = 0.012) to 54 ± 19 ms (late, p = 0.004), with no change between early and late post-MI time-points (p = 0.56). TTP was not related to reduction of segmental contractility. EAM revealed late electrical activation and greatly diminished conduction velocity in the infarct (5.7 ± 2.4 cm/s), when compared to peri-infarct (18.7 ± 10.3 cm/s) and remote myocardium (39 ± 20.5 cm/s). CONCLUSIONS: Mechanical dyssynchrony occurs early after MI and is the result of delayed electrical and mechanical activation in the infarct.
Resumo:
Reliable information is a crucial factor influencing decision-making and, thus, fitness in all animals. A common source of information comes from inadvertent cues produced by the behavior of conspecifics. Here we use a system of experimental evolution with robots foraging in an arena containing a food source to study how communication strategies can evolve to regulate information provided by such cues. The robots could produce information by emitting blue light, which the other robots could perceive with their cameras. Over the first few generations, the robots quickly evolved to successfully locate the food, while emitting light randomly. This behavior resulted in a high intensity of light near food, which provided social information allowing other robots to more rapidly find the food. Because robots were competing for food, they were quickly selected to conceal this information. However, they never completely ceased to produce information. Detailed analyses revealed that this somewhat surprising result was due to the strength of selection on suppressing information declining concomitantly with the reduction in information content. Accordingly, a stable equilibrium with low information and considerable variation in communicative behaviors was attained by mutation selection. Because a similar coevolutionary process should be common in natural systems, this may explain why communicative strategies are so variable in many animal species.
Resumo:
Climate change poses a serious threat to species persistence. Effective modelling of evolutionary responses to rapid climate change is therefore essential. In this review we examine recent advances in phylogenetic comparative methods, techniques normally used to study adaptation over long periods, which allow them to be applied to the study of adaptation over shorter time scales. This increased applicability is largely due to the emergence of more flexible models of character evolution and the parallel development of molecular technologies that can be used to assess adaptive variation at loci scattered across the genome. The merging of phylogenetic and population genetic approaches to the study of adaptation has significant potential to advance our understanding of rapid responses to environmental change.
Resumo:
One of the important questions in biological evolution is to know if certain changes along protein coding genes have contributed to the adaptation of species. This problem is known to be biologically complex and computationally very expensive. It, therefore, requires efficient Grid or cluster solutions to overcome the computational challenge. We have developed a Grid-enabled tool (gcodeml) that relies on the PAML (codeml) package to help analyse large phylogenetic datasets on both Grids and computational clusters. Although we report on results for gcodeml, our approach is applicable and customisable to related problems in biology or other scientific domains.
Resumo:
We present a new approach for analyzing the turnover rates of Cretaceous radiolarians recorded in pelagic sequences of western Tethys, The analysis of major extinction-radiation events and the fluctuation of diversity are compared with major paleoceanographic events and variation of diversity in dinoflagellates, calcareous nannoplankton and ammonites. There is an extraordinary correlation between biotic changes and sea level changes, temperatures, O, C and Sr isotopes, phosphorus accumulation rates and anoxic episodes. This reveals a predominantly abiotic control on the evolution of radiolarians. The rate of turnover and the diversity through time of two major orders of radiolarians (nassellarians and spumellarians) exhibits (1) the quasi-parallelism of their diversity curves, excluding a direct competition between them, (2) greater resistance of spumellarians to extinction during the early stage of extinction intervals and (3) a stronger post-extinction recovery of nassellarians. Evolutionary rates of radiolarians can be a good means of monitoring global environmental changes and allowing us to understand more clearly the relationship between plankton evolution, climate and pale oceanographic processes.