145 resultados para quantum-enhanced metrology


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The World Health Organization (WHO) plans to submit the 11th revision of the International Classification of Diseases (ICD) to the World Health Assembly in 2018. The WHO is working toward a revised classification system that has an enhanced ability to capture health concepts in a manner that reflects current scientific evidence and that is compatible with contemporary information systems. In this paper, we present recommendations made to the WHO by the ICD revision's Quality and Safety Topic Advisory Group (Q&S TAG) for a new conceptual approach to capturing healthcare-related harms and injuries in ICD-coded data. The Q&S TAG has grouped causes of healthcare-related harm and injuries into four categories that relate to the source of the event: (a) medications and substances, (b) procedures, (c) devices and (d) other aspects of care. Under the proposed multiple coding approach, one of these sources of harm must be coded as part of a cluster of three codes to depict, respectively, a healthcare activity as a 'source' of harm, a 'mode or mechanism' of harm and a consequence of the event summarized by these codes (i.e. injury or harm). Use of this framework depends on the implementation of a new and potentially powerful code-clustering mechanism in ICD-11. This new framework for coding healthcare-related harm has great potential to improve the clinical detail of adverse event descriptions, and the overall quality of coded health data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NlmCategory="UNASSIGNED">As opposed to the standard detective quantum efficiency (DQE), effective DQE (eDQE) is a figure of merit that allows comparing the performances of imaging systems in the presence of scatter rejection devices. The geometry of the EOS™ slot-scanning system is such that the detector is self-collimated and rejects scattered radiation. In this study, the EOS system was characterised using the eDQE in imaging conditions similar to those used in clinical practice: with phantoms of different widths placed in the X-ray beam, for various incident air kerma and tube voltages corresponding to the phantom thickness. Scatter fractions in EOS images were extremely low, around 2 % for all configurations. Maximum eDQE values spanned 9-14.8 % for a large range of air kerma at the detector plane from 0.01 to 1.34 µGy. These figures were obtained with non-optimised EOS setting but still over-performed most of the maximum eDQEs recently assessed for various computed radiology and digital radiology systems with antiscatter grids.