219 resultados para plant optimization
Resumo:
RésuméEn agriculture d'énormes pertes sont causées par des champignons telluriques pathogènes tels que Thielaviopsis, Fusarium, Gaeumannomyces et Rhizoctonia ou encore l'oomycète Pythium. Certaines bactéries dites bénéfiques, comme Pseudomonas fluorescens, ont la capacité de protéger les plantes de ces pathogènes par la colonisation de leur racines, par la production de métabolites secondaires possédants des propriétés antifongiques et par l'induction des mécanismes de défenses de la plante colonisée. P. fluorescens CHAO, une bactérie biocontrôle isolée d'un champ de tabac à Payerne, a la faculté de produire un large spectre de métabolites antifongiques, en particulier le 2,4- diacétylphloroglucinol (DAPG), la pyolutéorine (PLT), le cyanure d'hydrogène (HCN), la pyrrolnitrine (PRN) ainsi que des chélateurs de fer.La plante, par sécrétion racinaire, produit des rhizodéposites, source de carbone et d'azote, qui profitent aux populations bactériennes vivant dans la rhizosphere. De plus, certains stresses biotiques et abiotiques modifient cette sécrétion racinaire, en terme quantitatif et qualitatif. De leur côté, les bactéries bénéfiques, améliorent, de façon direct et/ou indirect, la croissance de la plante hôte. De nombreux facteurs biotiques et abiotiques sont connus pour réguler la production de métabolites secondaires chez les bactéries. Des études récentes ont démontré l'importance de la communication entre la plante et les bactéries bénéfiques afin que s'établisse une interaction profitant à chacun des deux partis. Il est ainsi vraisemblable que les populations bactériennes associées aux racines soient capables d'intégrer ces signaux et d'adapter spécifiquement leur comportement en conséquence.La première partie de ce travail de thèse a été la mise au point d'outils basés sur la cytométrie permettant de mesurer l'activité antifongique de cellules bactériennes individuelles dans un environnent naturel, les racines des plantes. Nous avons démontré, grâce à un double marquage aux protéines autofluorescentes GFP et mCherry, que les niveaux d'expression des gènes impliqués dans la biosynthèse des substances antifongiques DAPG, PLT, PRN et HCN ne sont pas les mêmes dans des milieux de cultures liquides que sur les racines de céréales. Par exemple, l'expression de pltA (impliqué dans la biosynthèse du PLT) est quasiment abolie sur les racines de blé mais atteint un niveau relativement haut in vitro. De plus cette étude a mis en avant l'influence du génotype céréalien sur l'expression du gène phlA qui est impliqué dans la biosynthèse du DAPG.Une seconde étude a révélé la communication existant entre une céréale (orge) infectée par le pathogène tellurique Pythium ultimum et P. fluorescens CHAO. Un système de partage des racines nous a permis de séparer physiquement le pathogène et la bactérie bénéfique sur la plante. Cette méthode a donné la possibilité d'évaluer l'effet systémique, causé par l'attaque du pathogène, de la plante sur la bactérie biocontrôle. En effet, l'infection par le phytopathogène modifie la concentration de certains composés phénoliques dans les exsudats racinaires stimulant ainsi l'expression de phi A chez P.fluorescens CHAO.Une troisième partie de ce travail focalise sur l'effet des amibes qui sont des micro-prédateurs présents dans la rhizosphere. Leur présence diminue l'expression des gènes impliqués dans la biosynthèse du DAPG, PLT, PRN et HCN chez P.fluorescens CHAO, ceci en culture liquide et sur des racines d'orge. De plus, des molécules provenant du surnageant d'amibes, influencent l'expression des gènes requis pour la biosynthèse de ces antifongiques. Ces résultats illustrent que les amibes et les bactéries de la rhizosphere ont développé des stratégies pour se reconnaître et adapter leur comportement.La dernière section de ce travail est consacrée à l'acide indole-acétique (LA.A), une phytohormone connue pour son effet stimulateur sur phlA. Une étude moléculaire détaillée nous a démontré que cet effet de l'IAA est notamment modulé par une pompe à efflux (FusPl) et de son régulateur transcriptionnel (MarRl). De plus, les gènes fusPl et marRl sont régulés par d'autres composés phénoliques tels que le salicylate (un signal végétal) et l'acide fusarique (une phytotoxine du pathogène Fusarium).En résumé, ce travail de thèse illustre la complexité des interactions entre les eucaryotes et procaryotes de la rhizosphère. La reconnaissance mutuelle et l'instauration d'un dialogue moléculaire entre une plante hôte et ses bactéries bénéfiques associées? sont indispensables à la survie des deux protagonistes et semblent être hautement spécifiques.SummaryIn agriculture important crop losses result from the attack of soil-borne phytopathogenic fungi, including Thielaviopsis, Fusarium, Gaeumannomyces and Rhizoctonia, as well as from the oomycete Pythium. Certain beneficial microorganisms of the rhizosphere, in particular Pseudomonas fluorescens, have the ability to protect plants against phytopathogens by the intense colonisation of roots, by the production of antifungal exoproducts, and by induction of plant host defences. P. fluorescens strain CHAO, isolated from a tobacco field near Payerne, produces a large array of antifungal exoproducts, including 2,4-diacetylphloroglucinol (DAPG), pyoluteorin (PLT), hydrogen cyanide (HCN), pyrrolnitrin (PRN) and iron chelators. Plants produce rhizodeposites via root secretion and these represent a relevant source of carbon and nitrogen for rhizosphere microorganisms. Various biotic and abiotic stresses influence the quantity and the quality of released exudates. One the other hand, beneficial bacteria directly or indirectly promote plant growth. Biotic and abiotic factors regulate exoproduct production in biocontrol microorganisms. Recent studies have highlighted the importance of communication in establishing a fine-tuned mutualist interaction between plants and their associated beneficial bacteria. Bacteria may be able to integrate rhizosphere signals and adapt subsequently their behaviour.In a first part of the thesis, we developed a new method to monitor directly antifungal activity of individual bacterial cells in a natural environment, i.e. on roots of crop plants. We were able to demonstrate, via a dual-labelling system involving green and red fluorescent proteins (GFP, mCherry) and FACS-based flow cytometry, that expression levels of biosynthetic genes for the antifungal compounds DAPG, PLT, PRN, and HCN are highly different in liquid culture and on roots of cereals. For instance, expression of pltA (involved in PLT biosynthesis) was nearly abolished on wheat roots whereas it attained a relatively high level under in vitro conditions. In addition, we established the importance of the cereal genotype in the expression of phi A (involved in DAPG biosynthesis) in P. fluorescens CHAO.A second part of this work highlighted the systemic communication that exists between biocontrol pseudomonads and plants following attack by a root pathogen. A split-root system, allowing physical separation between the soil-borne oomycete pathogen Phytium ultimum and P. fluorescens CHAO on barley roots, was set up. Root infection by the pathogen triggered a modification of the concentration of certain phenolic root exudates in the healthy root part, resulting in an induction ofphlA expression in P. fluorescens CHAO.Amoebas are micro-predators of the rhizosphere that feed notably on bacteria. In the third part of the thesis, co-habitation of Acanthamoeba castellanii with P. fluorescens CHAO in culture media and on barley roots was found to significantly reduce bacterial expression of genes involved in the biosynthesis of DAPG, PLT, HCN and PRN. Interestingly, molecular cues present in supernatant of A. castelanii induced the expression of these antifungal genes. These findings illustrate the strategies of mutual recognition developed by amoeba and rhizosphere bacteria triggering responses that allow specific adaptations of their behaviour.The last section of the work focuses on indole-3-acetic acid (IAA), a phytohormone that stimulates the expression of phi A. A detailed molecular study revealed that the IAA-mediated effect on phi A is notably modulated by an efflux pump (FusPl) and its transcriptional regulator (MarRl). Remarkably, transcription of fusPl and marRl was strongly upregulated in presence of other phenolic compounds such as salicylate (a plant signal) and fusaric acid (a phytotoxin of the pathogenic fungus Fusarium).To sum up, this work illustrates the great complexity of interactions between eukaryotes and prokaryotes taking place in the rhizosphere niche. The mutual recognition and the establishment of a molecular cross-talk between the host plant and its associated beneficial bacteria are essential for the survival of the two partners and these interactions appear to be highly specific.
Resumo:
The ability to express tightly controlled amounts of endogenous and recombinant proteins in plant cells is an essential tool for research and biotechnology. Here, the inducibility of the soybean heat-shock Gmhsp17.3B promoter was addressed in the moss Physcomitrella patens, using beta-glucuronidase (GUS) and an F-actin marker (GFP-talin) as reporter proteins. In stably transformed moss lines, Gmhsp17.3B-driven GUS expression was extremely low at 25 degrees C. In contrast, a short non-damaging heat-treatment at 38 degrees C rapidly induced reporter expression over three orders of magnitude, enabling GUS accumulation and the labelling of F-actin cytoskeleton in all cell types and tissues. Induction levels were tightly proportional to the temperature and duration of the heat treatment, allowing fine-tuning of protein expression. Repeated heating/cooling cycles led to the massive GUS accumulation, up to 2.3% of the total soluble proteins. The anti-inflammatory drug acetyl salicylic acid (ASA) and the membrane-fluidiser benzyl alcohol (BA) also induced GUS expression at 25 degrees C, allowing the production of recombinant proteins without heat-treatment. The Gmhsp17.3B promoter thus provides a reliable versatile conditional promoter for the controlled expression of recombinant proteins in the moss P. patens.
Resumo:
Introduction of the recombinant cosmid pME3090 into Pseudomonas fluorescens strain CHAO, a good biocontrol agent of various diseases caused by soilborne pathogens, increased three- to five-fold the production of the antibiotic metabolites pyoluteorin (Pit) and 2,4-diacetylphlorogIucinol (Phi) in vitro. Strain CHAO/pME3090 also overproduced Pit and Phi in the rhizosphere of wheat infected or not infected with Pythium ultimum. The biocontrol activity of the wild-type and recombinant Straitis was compared using various plant pathogen-host combinations in a gnotobiotic system. Antibiotic overproduction affected neither the protection of wheat against P. ultimum and Gaeumannomyces graminis var. tritici nor the growth of wheat plants. In contrast, strain CHA0/pME3090 showed an increased capacity to protect cucumber against Fusarium oxysporum f. sp. cucumerinum and Phomopsis sclerotioides, compared with the wild-type strain CHAO, The antibiotic overproducing strain protected tobacco roots significantly better against Thielaviopsis basicola than the wild-type strain but drastically reduced the growth of tobacco plants and was also toxic to the growth of sweet com. On King's B agar and on malt agar, the recombinant strain CHA0/pME3090 inhibited all pathogens more than did the parental strain CHAO. Synthetic Pit and Phi were toxic to all fungi tested. Tobacco and sweet com were more sensitive to synthetic Pit and Phi than were cucumber and wheat. There was no correlation between the sensitivity of the pathogens to the synthetic antibiotics and the degree of disease suppression by strain CHAO pME3090. However, there was a correlation between the sensitivity of the plants and the toxicity of the recombinant strain. We conclude that the plant species rather than the pathogen determines whether cosmid pME3090 in P. fluorescens strain CHAO leads to improved disease suppression.
Resumo:
The potential ecological impact of ongoing climate change has been much discussed. High mountain ecosystems were identified early on as potentially very sensitive areas. Scenarios of upward species movement and vegetation shift are commonly discussed in the literature. Mountains being characteristically conic in shape, impact scenarios usually assume that a smaller surface area will be available as species move up. However, as the frequency distribution of additional physiographic factors (e.g., slope angle) changes with increasing elevation (e.g., with few gentle slopes available at higher elevation), species migrating upslope may encounter increasingly unsuitable conditions. As a result, many species could suffer severe reduction of their habitat surface, which could in turn affect patterns of biodiversity. In this paper, results from static plant distribution modeling are used to derive climate change impact scenarios in a high mountain environment. Models are adjusted with presence/absence of species. Environmental predictors used are: annual mean air temperature, slope, indices of topographic position, geology, rock cover, modeled permafrost and several indices of solar radiation and snow cover duration. Potential Habitat Distribution maps were drawn for 62 higher plant species, from which three separate climate change impact scenarios were derived. These scenarios show a great range of response, depending on the species and the degree of warming. Alpine species would be at greatest risk of local extinction, whereas species with a large elevation range would run the lowest risk. Limitations of the models and scenarios are further discussed.
Resumo:
Recent studies assessing the role of biological diversity for ecosystem functioning indicate that the diversity of functional traits and the evolutionary history of species in a community, not the number of taxonomic units, ultimately drives the biodiversity-ecosystem-function relationship. Here, we simultaneously assessed the importance of plant functional trait and phylogenetic diversity as predictors of major trophic groups of soil biota (abundance and diversity), six years from the onset of a grassland biodiversity experiment. Plant functional and phylogenetic diversity were generally better predictors of soil biota than the traditionally used species or functional group richness. Functional diversity was a reliable predictor for most biota, with the exception of soil microorganisms, which were better predicted by phylogenetic diversity. These results provide empirical support for the idea that the diversity of plant functional traits and the diversity of evolutionary lineages in a community are important for maintaining higher abundances and diversity of soil communities.
Resumo:
We investigated the ecogeographic characteristics of 118 Swiss plant species listed as those deserving highest conservation priority in a national conservation guide and classified them into the seven Rabinowitz' rarity types, taking geographic distribution, habitat rarity and local population size into account. Our analysis revealed that species with high conservation priority in Switzerland mostly have a very restricted geographic distribution in Switzerland and generally occur in rare habitats, but do not necessarily constitute small populations and are generally not endemics on a global scale. Moreover, species that are geographically very restricted on a regional scale are not generally restricted on a global scale. By analysing relationships between rarity and IUCN extinction risks for Switzerland, we demonstrated that species with the highest risk of extinction are those with the most restricted geographic distribution; whereas species with lower risk of extinction (but still high conservation priority) include many regional endemics. Habitat rarity and local population size appeared to be of minor importance for the assessment of extinction risk in Switzerland, but the total number of fulfilled rarity criteria still correlated positively with the severity of extinction risk. Our classification is the first preliminary assessment of the relative importance of each rarity type among endangered plant species of the Swiss flora and our results underline the need to distinguish between a regional and a global responsibility for the conservation of rare and endangered species.
Resumo:
Microstructure imaging from diffusion magnetic resonance (MR) data represents an invaluable tool to study non-invasively the morphology of tissues and to provide a biological insight into their microstructural organization. In recent years, a variety of biophysical models have been proposed to associate particular patterns observed in the measured signal with specific microstructural properties of the neuronal tissue, such as axon diameter and fiber density. Despite very appealing results showing that the estimated microstructure indices agree very well with histological examinations, existing techniques require computationally very expensive non-linear procedures to fit the models to the data which, in practice, demand the use of powerful computer clusters for large-scale applications. In this work, we present a general framework for Accelerated Microstructure Imaging via Convex Optimization (AMICO) and show how to re-formulate this class of techniques as convenient linear systems which, then, can be efficiently solved using very fast algorithms. We demonstrate this linearization of the fitting problem for two specific models, i.e. ActiveAx and NODDI, providing a very attractive alternative for parameter estimation in those techniques; however, the AMICO framework is general and flexible enough to work also for the wider space of microstructure imaging methods. Results demonstrate that AMICO represents an effective means to accelerate the fit of existing techniques drastically (up to four orders of magnitude faster) while preserving accuracy and precision in the estimated model parameters (correlation above 0.9). We believe that the availability of such ultrafast algorithms will help to accelerate the spread of microstructure imaging to larger cohorts of patients and to study a wider spectrum of neurological disorders.
Resumo:
Understanding the relative importance of historical and environmental processes in the structure and composition of communities is one of the longest quests in ecological research. Increasingly, researchers are relying on the functional and phylogenetic β-diversity of natural communities to provide concise explanations on the mechanistic basis of community assembly and the drivers of trait variation among species. The present study investigated how plant functional and phylogenetic β-diversity change along key environmental and spatial gradients in the Western Swiss Alps. Methods Using the quadratic diversity measure based on six functional traits: specific leaf area (SLA), leaf dry matter content (LDMC), plant height (H), leaf carbon content (C), leaf nitrogen content (N), and leaf carbon to nitrogen content (C/N) alongside a species-resolved phylogenetic tree, we relate variations in climate, spatial geographic, land use and soil gradients to plant functional and phylogenetic turnover in mountain communities of the Western Swiss Alps. Important findings Our study highlights two main points. First, climate and land use factors play an important role in mountain plant community turnover. Second, the overlap between plant functional and phylogenetic turnover along these gradients correlates with the low phylogenetic signal in traits, suggesting that in mountain landscapes, trait lability is likely an important factor in driving plant community assembly. Overall, we demonstrate the importance of climate and land use factors in plant functional and phylogenetic community turnover, and provide valuable complementary insights into understanding patterns of β-diversity along several ecological gradients.
Resumo:
The distribution of plants along environmental gradients is constrained by abiotic and biotic factors. Cumulative evidence attests of the impact of biotic factors on plant distributions, but only few studies discuss the role of belowground communities. Soil fungi, in particular, are thought to play an important role in how plant species assemble locally into communities. We first review existing evidence, and then test the effect of the number of soil fungal operational taxonomic units (OTUs) on plant species distributions using a recently collected dataset of plant and metagenomic information on soil fungi in the Western Swiss Alps. Using species distribution models (SDMs), we investigated whether the distribution of individual plant species is correlated to the number of OTUs of two important soil fungal classes known to interact with plants: the Glomeromycetes, that are obligatory symbionts of plants, and the Agaricomycetes, that may be facultative plant symbionts, pathogens, or wood decayers. We show that including the fungal richness information in the models of plant species distributions improves predictive accuracy. Number of fungal OTUs is especially correlated to the distribution of high elevation plant species. We suggest that high elevation soil show greater variation in fungal assemblages that may in turn impact plant turnover among communities. We finally discuss how to move beyond correlative analyses, through the design of field experiments manipulating plant and fungal communities along environmental gradients.
Resumo:
Long-term preservation of bioreporter bacteria is essential for the functioning of cell-based detection devices, particularly when field application, e.g., in developing countries, is intended. We varied the culture conditions (i.e., the NaCl content of the medium), storage protection media, and preservation methods (vacuum drying vs. encapsulation gels remaining hydrated) in order to achieve optimal preservation of the activity of As (III) bioreporter bacteria during up to 12 weeks of storage at 4 degrees C. The presence of 2% sodium chloride during the cultivation improved the response intensity of some bioreporters upon reconstitution, particularly of those that had been dried and stored in the presence of sucrose or trehalose and 10% gelatin. The most satisfying, stable response to arsenite after 12 weeks storage was obtained with cells that had been dried in the presence of 34% trehalose and 1.5% polyvinylpyrrolidone. Amendments of peptone, meat extract, sodium ascorbate, and sodium glutamate preserved the bioreporter activity only for the first 2 weeks, but not during long-term storage. Only short-term stability was also achieved when bioreporter bacteria were encapsulated in gels remaining hydrated during storage.
Resumo:
Aims: To assess the potential distribution of an obligate seeder and active pyrophyte, Cistus salviifolius, a vulnerable species in the Swiss Red List; to derive scenarios by changing the fire return interval; and to discuss the results from a conservation perspective. A more general aim is to assess the impact of fire as a natural factor influencing the vegetation of the southern slopes of the Alps. Locations: Alps, southern Switzerland. Methods: Presence-absence data to fit the model were obtained from the most recent field mapping of C. salviifolius. The quantitative environmental predictors used in this study include topographic, climatic and disturbance (fire) predictors. Models were fitted by logistic regression and evaluated by jackknife and bootstrap approaches. Changes in fire regime were simulated by increasing the time-return interval of fire (simulating longer periods without fire). Two scenarios were considered: no fire in the past 15 years; or in the past 35 years. Results: Rock cover, slope, topographic position, potential evapotranspiration and time elapsed since the last fire were selected in the final model. The Nagelkerke R-2 of the model for C. salviifolius was 0.57 and the Jackknife area under the curve evaluation was 0.89. The bootstrap evaluation revealed model robustness. By increasing the return interval of fire by either up to 15 years, or 35 years, the modelled C. salviifolius population declined by 30-40%, respectively. Main conclusions: Although fire plays a significant role, topography and rock cover appear to be the most important predictors, suggesting that the distribution of C. salviifolius in the southern Swiss Alps is closely related to the availability of supposedly competition-free sites, such as emerging bedrock, ridge locations or steep slopes. Fire is more likely to play a secondary role in allowing C. salviifolius to extend its occurrence temporarily, by increasing germination rates and reducing the competition from surrounding vegetation. To maintain a viable dormant seed bank for C. salviifolius, conservation managers should consider carrying out vegetation clearing and managing wild fire propagation to reduce competition and ensure sufficient recruitment for this species.
Resumo:
In order to explore potential alternatives to the production of polyhydroxyalkanoates (PHAs) in bacteria, the enzymes of Alcaligenes eutrophus involved in the synthesis of polyhydroxybutyrate (PHB) have been expressed in the model plant Arabidopsis thaliana. Following the successful production of low amounts of high molecular weight PHB in plants expressing the acetoacetyl-CoA reductase and the PHB synthase in the cytoplasm of Arabidopsis cell, expression of the PHB pathway in the pastids was achieved by modifying the PHB enzymes with plastid targeting signals. This strategy resulted in a significant increase in the formation of PHB in Arabidopsis, with a maximum of 14% of the leaf dry weight . The increase in PHB production is most likely due to the higher flux in the plastids of acetyl-CoA, the precursor for PHB synthesis. A detailed study of metabolic fluxes in Arabidopsis plants producing high levels of PHB could help to determine the potential problems and limitations of PHB synthesis in Arabidopsis and could be useful for optimising strategies for the production of PHB in crop plants. The knowledge on PHB production could also be used for the production of PHAs other than PHB. Apart from PHB, no other PHAs have been produced in an eukaryotic system. Arabidopsis will therefore be used as a model system for the production in eukaryotes of more complex PHAs, such as poly(hydroxybutyrate-co-hydroxyvylerate) or medium-chain-lenght-PHAs.
Resumo:
Taphrina deformans is a fungus responsible for peach leaf curl, an important plant disease. It is phylogenetically assigned to the Taphrinomycotina subphylum, which includes the fission yeast and the mammalian pathogens of the genus Pneumocystis. We describe here the genome of T. deformans in the light of its dual plant-saprophytic/plant-parasitic lifestyle. The 13.3-Mb genome contains few identifiable repeated elements (ca. 1.5%) and a relatively high GC content (49.5%). A total of 5,735 protein-coding genes were identified, among which 83% share similarities with other fungi. Adaptation to the plant host seems reflected in the genome, since the genome carries genes involved in plant cell wall degradation (e.g., cellulases and cutinases), secondary metabolism, the hallmark glyoxylate cycle, detoxification, and sterol biosynthesis, as well as genes involved in the biosynthesis of plant hormones. Genes involved in lipid metabolism may play a role in its virulence. Several locus candidates for putative MAT cassettes and sex-related genes akin to those of Schizosaccharomyces pombe were identified. A mating-type-switching mechanism similar to that found in ascomycetous yeasts could be in effect. Taken together, the findings are consistent with the alternate saprophytic and parasitic-pathogenic lifestyles of T. deformans. IMPORTANCE: Peach leaf curl is an important plant disease which causes significant losses of fruit production. We report here the genome sequence of the causative agent of the disease, the fungus Taphrina deformans. The genome carries characteristic genes that are important for the plant infection process. These include (i) proteases that allow degradation of the plant tissues; (ii) secondary metabolites which are products favoring interaction of the fungus with the environment, including the host; (iii) hormones that are responsible for the symptom of severely distorted leaves on the host; and (iv) drug detoxification enzymes that confer resistance to fungicides. The availability of the genome allows the design of new drug targets as well as the elaboration of specific management strategies to fight the disease.
Resumo:
Mutualism often involves reciprocal exploitation due to individual selection for increased benefits even at the expense of the partner. Therefore, stability and outcomes of such interactions crucially depend on cost limitation mechanisms. In the plant, pollinator /seed predator interaction between Silene latifolia (Caryophyllaceae) and Hadena bicruris (Lepidoptera: Noctuidae), moths generate pollination benefits as adults but impose seed predation costs as larvae. We examined whether floral morphology limits over-exploitation by constraining oviposition site. Oviposition site varies naturally inside vs. outside the corolla tube, but neither its determinants nor its effect on the interaction have been investigated. In a common garden with plants originating from eight populations, corolla tube length predicted oviposition site, but not egg presence or pollination efficiency, suggesting that long corolla tubes constrain the moth to lay eggs on petals. Egg position was also predicted by the combined effect of corolla tube and moth ovipositor lengths, with shorter ovipositor than corolla tube resulting in higher probability for eggs outside. Egg position on a given plant was repeatable over different exposure nights. When egg position was experimentally manipulated, eggs placed on the petal resulted in significantly fewer successful fruit attacks compared with eggs placed inside the corolla tube, suggesting differences in egg/larval mortality. Egg position also differently affected larval mass, fruit mass and fruit development. Our results indicate that constraining oviposition site through a long corolla tube reduces seed predation costs suffered by the plant without negatively affecting pollination efficiency and, hence may act to limit over-exploitation. However, the net effects of corolla tube depth variation on this interaction may fluctuate with extrinsic factors affecting egg mortality, and with patterns of gene flow affecting trait matching between the interacting species. The intermediate fitness costs incurred by both plant and insect associated with the different egg positions may reduce selective pressures for this interaction to evolve towards antagonism, favouring instead a mutualistic outcome. While a role for oviposition site variation in cost limitation is a novel finding in this system, it may apply more generally also to other mutualisms involving pollinating seed predators.