183 resultados para magnetic iron removing
Resumo:
Overactive bladder (OAB) is a prevalent condition with 16% of adults having one or more symptoms that significantly affect quality of life. Transcutaneous electrical nerve stimulation and neuromodulators have had success in treating OAB but are expensive, invasive, and sometimes cumbersome. We developed an alternative neuromodulatory technique that involves electromagnetic stimulation of the sacral nerve roots with a portable electromagnetic device to produce trans-sacral stimulation of the S3 and S4 sacral nerve roots. The aim of this study was to evaluate the impact of this device on OAB symptoms in women with a prospectively randomised double-blind controlled study. Following a power analysis, women with symptoms of OAB were prospectively recruited with ethical approval for randomisation to an active treatment (n = 33) or placebo group (n = 30) in a double-blind trial. The patient, at home, used the belt device daily for 20 min over 12 weeks. Outcome measures included a 3-day voiding diary, 1 h pad test, visual analogue score (VAS) for symptom impact (0-100%), Kings Health Questionnaire (KHQ) and Australian Quality of Life questionnaire (AQOL) at baseline, 6 and 12 weeks. Overall, no difference was found between groups for any of the research questions. Specifically, we were unable to demonstrate any difference between the active and sham device groups in frequency, nocturia, urinary leakage, or quality of life, nor was there any evidence of a placebo effect. The quality of the data was high with the number of missing observations (especially for disease specific KHQ and general AQOL) being few. This attempt to promote trans-sacral electromagnetic neuromodulation with a specially created device was ineffective on the symptoms of OAB.
Resumo:
Rupture of unstable plaques may lead to myocardial infarction or stroke and is the leading cause of morbidity and mortality in western countries. Thus, there is a clear need for identifying these vulnerable plaques before the rupture occurs. Atherosclerotic plaques are a challenging imaging target as they are small and move rapidly, especially in the coronary tree. Many of the currently available imaging tools for clinical use still provide minimal information about the biological characteristics of plaques, because they are limited with respect to spatial and temporal resolution. Moreover, many of these imaging tools are invasive. The new generation of imaging modalities such as magnetic resonance imaging, nuclear imaging such as positron emission tomography and single photon emission computed tomography, computed tomography, fluorescence imaging, intravascular ultrasound, and optical coherence tomography offer opportunities to overcome some of these limitations. This review discusses the potential of these techniques for imaging the unstable plaque.
Resumo:
PURPOSE: To evaluate the utility of inversion recovery with on-resonant water suppression (IRON) in combination with injection of the long-circulating monocrystalline iron oxide nanoparticle (MION)-47 for contrast material-enhanced magnetic resonance (MR) angiography. MATERIALS AND METhods: Experiments were approved by the institutional animal care committee. Eleven rabbits were imaged at baseline before injection of a contrast agent and then serially 5-30 minutes, 2 hours, 1 day, and 3 days after a single intravenous bolus injection of 80 micromol of MION-47 per kilogram of body weight (n = 6) or 250 micromol/kg MION-47 (n = 5). Conventional T1-weighted MR angiography and IRON MR angiography were performed on a clinical 3.0-T imager. Signal-to-noise and contrast-to-noise ratios were measured in the aorta of rabbits in vivo. Venous blood was obtained from the rabbits before and after MION-47 injection for use in phantom studies. RESULTS: In vitro blood that contained MION-47 appeared signal attenuated on T1-weighted angiograms, while characteristic signal-enhanced dipolar fields were observed on IRON angiograms. In vivo, the vessel lumen was signal attenuated on T1-weighted MR angiograms after MION-47 injection, while IRON supported high intravascular contrast by simultaneously providing positive signal within the vessels and suppressing background tissue (mean contrast-to-noise ratio, 61.9 +/- 12.4 [standard deviation] after injection vs 1.1 +/- 0.4 at baseline, P < .001). Contrast-to-noise ratio was higher on IRON MR angiograms than on conventional T1-weighted MR angiograms (9.0 +/- 2.5, P < .001 vs IRON MR angiography) and persisted up to 24 hours after MION-47 injection (76.2 +/- 15.9, P < .001 vs baseline). CONCLUSION: IRON MR angiography in conjunction with superparamagnetic nanoparticle administration provides high intravascular contrast over a long time and without the need for image subtraction.
Resumo:
The purpose of this study was to investigate the impact of navigator timing on image quality in navigator-gated and real-time motion-corrected, free-breathing, three-dimensional (3D) coronary MR angiography (MRA) with submillimeter spatial image resolution. Both phantom and in vivo investigations were performed. 3D coronary MRA with real-time navigator technology was applied using variable navigator time delays (time delay between the navigator and imaging sequences) and varying spatial resolutions. Quantitative objective and subjective image quality parameters were assessed. For high-resolution imaging, reduced image quality was found as a function of increasing navigator time delay. Lower spatial resolution coronary MRA showed only minor sensitivity to navigator timing. These findings were consistent among volunteers and phantom experiments. In conclusion, for submillimeter navigator-gated and real-time motion-corrected 3D coronary MRA, shortening the time delay between the navigator and the imaging portion of the sequence becomes increasingly important for improved spatial resolution.
Resumo:
We propose a novel compressed sensing technique to accelerate the magnetic resonance imaging (MRI) acquisition process. The method, coined spread spectrum MRI or simply s(2)MRI, consists of premodulating the signal of interest by a linear chirp before random k-space under-sampling, and then reconstructing the signal with nonlinear algorithms that promote sparsity. The effectiveness of the procedure is theoretically underpinned by the optimization of the coherence between the sparsity and sensing bases. The proposed technique is thoroughly studied by means of numerical simulations, as well as phantom and in vivo experiments on a 7T scanner. Our results suggest that s(2)MRI performs better than state-of-the-art variable density k-space under-sampling approaches.
Resumo:
Acute myocarditis was until recently one of the most difficult diagnoses in cardiology. The spectrum of signs and symptoms is very wide, the usual non-invasive tests lack specificity and the myocardial biopsy is only performed in a minority of cases to confirm the diagnosis. Due to its unique ability to directly image myocardial necrosis, fibrosis and oedema, cardiac magnetic resonance (CMR) is now considered the primary tool for noninvasive assessment of patients with suspected myocarditis. CMR is also useful for monitoring disease activity under treatment. Myocarditis has been associated with the development of dilated cardiomyopathy; CMR could play a role in the follow-up of such cases to detect the progression toward a dilatative phenotype. Precise mapping of myocardial lesions with cardiac MRI is invaluable to guide myocardial biopsy and increase its diagnostic yield by improving sensitivity.
Resumo:
At 3 T, the effective wavelength of the RF field is comparable to the dimension of the human body, resulting in B1 standing wave effects and extra variations in phase. This effect is accompanied by an increase in B0 field inhomogeneity compared to 1.5 T. This combination results in nonuniform magnetization preparation by the composite MLEV weighted T2 preparation (T2 Prep) sequence used for coronary magnetic resonance angiography (MRA). A new adiabatic refocusing T2 Prep sequence is presented in which the magnetization is tipped into the transverse plane with a hard RF pulse and refocused using a pair of adiabatic fast-passage RF pulses. The isochromats are subsequently returned to the longitudinal axis using a hard RF pulse. Numerical simulations predict an excellent suppression of artifacts originating from B1 inhomogeneity while achieving good contrast enhancement between coronary arteries and surrounding tissue. This was confirmed by an in vivo study, in which coronary MR angiograms were obtained without a T2 Prep, with an MLEV weighted T2 Prep and the proposed adiabatic T2 Prep. Improved quantitative and qualitative coronary MRA image measurement was achieved using the adiabatic T2 Prep at 3 T.
Resumo:
The purpose of this study was to determine the impact of axial traction during acquisition of direct magnetic resonance (MR) arthrography examination of the knee in terms of joint space width and amount of contrast material between the cartilage surfaces. Direct knee MR arthrography was performed in 11 patients on a 3-T MR imaging unit using a T1-weighted isotropic gradient echo sequence in a coronal plane with and without axial traction of 15 kg. Joint space widths were measured at the level of the medial and the lateral femorotibial joint with and without traction. The amount of contrast material in the medial and lateral femorotibial joint was assessed independently by two musculoskeletal radiologists in a semiquantitative manner using three grades ('absence of surface visualization, 'partial surface visualization or 'complete surface visualization'). With traction, joint space width increased significantly at the lateral femorotibial compartment (mean = 0.55 mm, p = 0.0105) and at the medial femorotibial compartment (mean = 0.4 mm, p = 0.0124). There was a trend towards an increased amount of contrast material in the femorotibial compartment with axial traction. Direct MR arthrography of the knee with axial traction showed a slight and significant increase of the width of the femorotibial compartment with a trend towards more contrast material between the articular cartilage surfaces.
Resumo:
ABSTRACT: Iron deficiency without anemia (IDWA) is related to adverse symptoms that can be relieved by supplementation. Since a blood donation can induce such an iron deficiency, we investigated the clinical impact of an iron treatment after blood donation. METHODS: One week after donation, we randomly assigned 154 female donors with IDWA aged <50 years to a 4-week oral treatment of ferrous sulfate vs. placebo. The main outcome was the change in the level of fatigue before and after the intervention. Also evaluated were aerobic capacity, mood disorder, quality of life, compliance and adverse events. Biological markers were hemoglobin and ferritin. RESULTS: Treatment effect from baseline to 4 weeks for hemoglobin and ferritin were 5.2 g/L (p < 0.01) and 14.8 ng/mL (p < 0.01) respectively. No significant clinical effect was observed for fatigue (-0.15 points, 95% confidence interval -0.9 to 0.6, p = 0.697) or for other outcomes. Compliance and interruption for side effects was similar in both groups. Additionally, blood donation did not induce overt symptoms of fatigue in spite of the significant biological changes it produces. CONCLUSIONS: These data are valuable as they enable us to conclude that donors with IDWA after a blood donation would not clinically benefit from iron supplementation. Trial registration: NCT00689793.
Resumo:
CONTEXT: Recent magnetic resonance imaging studies have attempted to relate volumetric brain measurements in early schizophrenia to clinical and functional outcome some years later. These studies have generally been negative, perhaps because gray and white matter volumes inaccurately assess the underlying dysfunction that might be predictive of outcome. OBJECTIVE: To investigate the predictive value of frontal and temporal spectroscopy measures for outcome in patients with first-episode psychoses. DESIGN: Left prefrontal cortex and left mediotemporal lobe voxels were assessed using proton magnetic resonance spectroscopy to provide the ratio of N-acetylaspartate (NAA) and choline-containing compounds to creatine and phosphocreatine (Cr) (NAA/Cr ratio). These data were used to predict outcome at 18 months after admission, as assessed by a systematic medical record audit. SETTING: Early psychosis clinic. PARTICIPANTS: Forty-six patients with first-episode psychosis. MAIN OUTCOME MEASURES: We used regression models that included age at imaging and duration of untreated psychosis to predict outcome scores on the Global Assessment of Functioning Scale, Clinical Global Impression scales, and Social and Occupational Functional Assessment Scale, as well as the number of admissions during the treatment period. We then further considered the contributions of premorbid function and baseline level of negative symptoms. RESULTS: The only spectroscopic predictor of outcome was the NAA/Cr ratio in the prefrontal cortex. Low scores on this variable were related to poorer outcome on all measures. In addition, the frontal NAA/Cr ratio explained 17% to 30% of the variance in outcome. CONCLUSIONS: Prefrontal neuronal dysfunction is an inconsistent feature of early psychosis; rather, it is an early marker of poor prognosis across the first years of illness. The extent to which this can be used to guide treatment and whether it predicts outcome some years after first presentation are questions for further research.
Resumo:
BACKGROUND: Coronary in-stent restenosis cannot be directly assessed by magnetic resonance angiography (MRA) because of the local signal void of currently used stainless steel stents. The aim of this study was to investigate the potential of a new, dedicated, coronary MR imaging (MRI) stent for artifact-free, coronary MRA and in-stent lumen and vessel wall visualization. METHODS AND RESULTS: Fifteen prototype stents were deployed in coronary arteries of 15 healthy swine and investigated with a double-oblique, navigator-gated, free-breathing, T2-prepared, 3D cartesian gradient-echo sequence; a T2-prepared, 3D spiral gradient-echo sequence; and a T2-prepared, 3D steady-state, free-precession coronary MRA sequence. Furthermore, black-blood vessel wall imaging by a dual-inversion-recovery, turbo spin-echo sequence was performed. Artifacts of the stented vessel segment and signal intensities of the coronary vessel lumen inside and outside the stent were assessed. With all investigated sequences, the vessel lumen and wall could be visualized without artifacts, including the stented vessel segment. No signal intensity alterations inside the stent when compared with the vessel lumen outside the stent were found. CONCLUSIONS: The new, coronary MRI stent allows for completely artifact-free coronary MRA and vessel wall imaging.
Resumo:
BACKGROUND: Cardiovascular magnetic resonance (CMR) has become an important diagnostic imaging modality in cardiovascular medicine. However, insufficient image quality may compromise its diagnostic accuracy. We aimed to describe and validate standardized criteria to evaluate a) cine steady-state free precession (SSFP), b) late gadolinium enhancement (LGE), and c) stress first-pass perfusion images. These criteria will serve for quality assessment in the setting of the Euro-CMR registry. METHODS: Thirty-five qualitative criteria were defined (scores 0-3) with lower scores indicating better image quality. In addition, quantitative parameters were measured yielding 2 additional quality criteria, i.e. signal-to-noise ratio (SNR) of non-infarcted myocardium (as a measure of correct signal nulling of healthy myocardium) for LGE and % signal increase during contrast medium first-pass for perfusion images. These qualitative and quantitative criteria were assessed in a total of 90 patients (60 patients scanned at our own institution at 1.5T (n=30) and 3T (n=30) and in 30 patients randomly chosen from the Euro-CMR registry examined at 1.5T). Analyses were performed by 2 SCMR level-3 experts, 1 trained study nurse, and 1 trained medical student. RESULTS: The global quality score was 6.7±4.6 (n=90, mean of 4 observers, maximum possible score 64), range 6.4-6.9 (p=0.76 between observers). It ranged from 4.0-4.3 for 1.5T (p=0.96 between observers), from 5.9-6.9 for 3T (p=0.33 between observers), and from 8.6-10.3 for the Euro-CMR cases (p=0.40 between observers). The inter- (n=4) and intra-observer (n=2) agreement for the global quality score, i.e. the percentage of assignments to the same quality tertile ranged from 80% to 88% and from 90% to 98%, respectively. The agreement for the quantitative assessment for LGE images (scores 0-2 for SNR <2, 2-5, >5, respectively) ranged from 78-84% for the entire population, and 70-93% at 1.5T, 64-88% at 3T, and 72-90% for the Euro-CMR cases. The agreement for perfusion images (scores 0-2 for %SI increase >200%, 100%-200%,<100%, respectively) ranged from 81-91% for the entire population, and 76-100% at 1.5T, 67-96% at 3T, and 62-90% for the Euro-CMR registry cases. The intra-class correlation coefficient for the global quality score was 0.83. CONCLUSIONS: The described criteria for the assessment of CMR image quality are robust with a good inter- and intra-observer agreement. Further research is needed to define the impact of image quality on the diagnostic and prognostic yield of CMR studies.
Resumo:
Nanoparticles (NPs) are in clinical use or under development for therapeutic imaging and drug delivery. However, relatively little information exists concerning the uptake and transport of NPs across human colon cell layers, or their potential to invade three-dimensional models of human colon cells that better mimic the tissue structures of normal and tumoral colon. In order to gain such information, the interactions of biocompatible ultrasmall superparamagnetic iron oxide nanoparticles (USPIO NPs) (iron oxide core 9-10 nm) coated with either cationic polyvinylamine (aminoPVA) or anionic oleic acid with human HT-29 and Caco-2 colon cells was determined. The uptake of the cationic USPIO NPs was much higher than the uptake of the anionic USPIO NPs. The intracellular localization of aminoPVA USPIO NPs was confirmed in HT-29 cells by transmission electron microscopy that detected the iron oxide core. AminoPVA USPIO NPs invaded three-dimensional spheroids of both HT-29 and Caco-2 cells, whereas oleic acid-coated USPIO NPs could only invade Caco-2 spheroids. Neither cationic aminoPVA USPIO NPs nor anionic oleic acid-coated USPIO NPs were transported at detectable levels across the tight CacoReady? intestinal barrier model or the more permeable mucus-secreting CacoGoblet? model.
Resumo:
Background: The 2007 European Crohn's and Colitis Organization guidelines on anemia in inflammatory bowel disease (IBD) favour intravenous (iv) over oral (po) iron supplementation due to better effectiveness and tolerance. We aimed to determine the percentage of IBD patients under iron supplementation therapy and the dynamics of prescription habits (iv versus po) over time. Methods: Helsana, a leading Swiss health insurance company provides coverage for approximately 18% of the Swiss population, corresponding to about 1.2 million enrollees. Patients with Crohn's disease (CD) and ulcerative colitis (UC) were analyzed from the anonymised Helsana database. Results: In total, 629 CD (61% female) and 398 UC (57% female) patients were identified, mean observation time was 31.8 months for CD and 31.0 months for UC patients. Of the entire study population, 27.1% were prescribed iron (21.1% in males and 31.1% in females). Patients treated with IBDspecific drugs (steroids, immunomodulators, anti-TNF agents) were more frequently treated with iron compared to patients without any medication (35.0% vs. 20.9%, OR 1.91, 95%- CI 1.41 2.61). The prescription of iv iron increased from 2006/2007 (48.8% of all patients receiving any iron priscription) to 65.2% in 2008/2009 by a factor of 1.89. Conclusions: One third of the IBD population was treated with iron supplementation. A gradual shift from oral to iv iron was observed over time. This switch in prescription habits goes along with the implementation of the ECCO consensus guidelines on anemia in IBD.