162 resultados para generalized Schwarz–Christoffel mapping
Resumo:
Proteins PRPF31, PRPF3 and PRPF8 (RP-PRPFs) are ubiquitously expressed components of the spliceosome, a macromolecular complex that processes nearly all pre-mRNAs. Although these spliceosomal proteins are conserved in eukaryotes and are essential for survival, heterozygous mutations in human RP-PRPF genes lead to retinitis pigmentosa, a hereditary disease restricted to the eye. Using cells from patients with 10 different mutations, we show that all clinically relevant RP-PRPF defects affect the stoichiometry of spliceosomal small nuclear RNAs (snRNAs), the protein composition of tri-small nuclear ribonucleoproteins and the kinetics of spliceosome assembly. These mutations cause inefficient splicing in vitro and affect constitutive splicing ex-vivo by impairing the removal of at least 9% of endogenously expressed introns. Alternative splicing choices are also affected when RP-PRPF defects are present. Furthermore, we show that the steady-state levels of snRNAs and processed pre-mRNAs are highest in the retina, indicating a particularly elevated splicing activity. Our results suggest a role for PRPFs defects in the etiology of PRPF-linked retinitis pigmentosa, which appears to be a truly systemic splicing disease. Although these mutations cause widespread and important splicing defects, they are likely tolerated by the majority of human tissues but are critical for retinal cell survival.
Resumo:
BACKGROUND: Used in conjunction with biological surveillance, behavioural surveillance provides data allowing for a more precise definition of HIV/STI prevention strategies. In 2008, mapping of behavioural surveillance in EU/EFTA countries was performed on behalf of the European Centre for Disease prevention and Control. METHOD: Nine questionnaires were sent to all 31 member States and EEE/EFTA countries requesting data on the overall behavioural and second generation surveillance system and on surveillance in the general population, youth, men having sex with men (MSM), injecting drug users (IDU), sex workers (SW), migrants, people living with HIV/AIDS (PLWHA), and sexually transmitted infection (STI) clinics patients. Requested data included information on system organisation (e.g. sustainability, funding, institutionalisation), topics covered in surveys and main indicators. RESULTS: Twenty-eight of the 31 countries contacted supplied data. Sixteen countries reported an established behavioural surveillance system, and 13 a second generation surveillance system (combination of biological surveillance of HIV/AIDS and STI with behavioural surveillance). There were wide differences as regards the year of survey initiation, number of populations surveyed, data collection methods used, organisation of surveillance and coordination with biological surveillance. The populations most regularly surveyed are the general population, youth, MSM and IDU. SW, patients of STI clinics and PLWHA are surveyed less regularly and in only a small number of countries, and few countries have undertaken behavioural surveys among migrant or ethnic minorities populations. In many cases, the identification of populations with risk behaviour and the selection of populations to be included in a BS system have not been formally conducted, or are incomplete. Topics most frequently covered are similar across countries, although many different indicators are used. In most countries, sustainability of surveillance systems is not assured. CONCLUSION: Although many European countries have established behavioural surveillance systems, there is little harmonisation as regards the methods and indicators adopted. The main challenge now faced is to build and maintain organised and functional behavioural and second generation surveillance systems across Europe, to increase collaboration, to promote robust, sustainable and cost-effective data collection methods, and to harmonise indicators.
Resumo:
PURPOSE: The natural history of prostate cancer might be driven by the index lesion. We determined the percent of men in whom the index lesion could be defined using transperineal template prostate mapping biopsies. MATERIALS AND METHODS: Included in study were consecutive men undergoing transperineal template prostate mapping biopsies with biopsies grouped into 20 zones. Men with clinically significant disease in only 1 prostate area were considered to have an identifiable index lesion. We evaluated the impact of using 2 definitions of clinically significant disease (Gleason grade pattern 4 and/or lesion volume 0.5 cc or greater) and 2 clustering rules (stringent and tolerant) to define the index lesion. RESULTS: Included in study were 391 men with a median age of 62 years (IQR 58-67) and a median prostate specific antigen of 6.9 ng/ml (IQR 4.8-10.0). Of the men 269 (69%) were previously diagnosed with prostate cancer. By deploying a median of 1.2 cores per ml (IQR 0.9-1.7) cancer was diagnosed in 82.9% of the men (324 of 391) with a median of 6 positive cores (IQR 2-9), a median maximum cancer core length of 5 mm (IQR 3-8) and a total cancer core length per zone of 7 mm (IQR 3-13). Insignificant disease was found in 26.3% to 42.9% of cases. When a stringent spatial relationship was used to define individual lesions, 44.4% to 54.6% of patients had 1 index lesion and 12.7% to 19.1% had more than 1 area with clinically significant disease. These proportions changed to 46.6% to 59.2% and 10.5% to 14.5%, respectively, when less stringent spatial clustering was applied. CONCLUSIONS: Transperineal template prostate mapping biopsies enable the index lesion to be localized in most men with clinically significant disease. This information may be important to select appropriate candidates for targeted therapy and to plan a tailored treatment strategy in men undergoing radical therapy.
Resumo:
PURPOSE: To implement and characterize an isotropic three-dimensional cardiac T2 mapping technique. METHODS: A self-navigated three-dimensional radial segmented balanced steady-state free precession pulse sequence with an isotropic 1.7-mm spatial resolution was implemented at 3T with a variable T2 preparation module. Bloch equation and Monte Carlo simulations were performed to determine the influence of the heart rate, B1 inhomogeneity and noise on the T2 fitting accuracy. In a phantom study, the accuracy of the pulse sequence was studied through comparison with a gold-standard spin-echo T2 mapping method. The robustness and homogeneity of the technique were ascertained in a study of 10 healthy adult human volunteers, while first results obtained in patients are reported. RESULTS: The numerical simulations demonstrated that the heart rate and B1 inhomogeneity cause only minor deviations in the T2 fitting, whereas the phantom study showed good agreement of the technique with the gold standard. The volunteer study demonstrated an average myocardial T2 of 40.5 ± 3.3 ms and a <15% T2 gradient in the base-apex and anterior-inferior direction. In three patients, elevated T2 values were measured in regions with expected edema. CONCLUSION: This respiratory self-navigated isotropic three-dimensional technique allows for accurate and robust in vitro and in vivo T2 quantification. Magn Reson Med 73:1549-1554, 2015. © 2014 Wiley Periodicals, Inc.
Resumo:
PURPOSE: All methods presented to date to map both conductivity and permittivity rely on multiple acquisitions to compute quantitatively the magnitude of radiofrequency transmit fields, B1+. In this work, we propose a method to compute both conductivity and permittivity based solely on relative receive coil sensitivities ( B1-) that can be obtained in one single measurement without the need to neither explicitly perform transmit/receive phase separation nor make assumptions regarding those phases. THEORY AND METHODS: To demonstrate the validity and the noise sensitivity of our method we used electromagnetic finite differences simulations of a 16-channel transceiver array. To experimentally validate our methodology at 7 Tesla, multi compartment phantom data was acquired using a standard 32-channel receive coil system and two-dimensional (2D) and 3D gradient echo acquisition. The reconstructed electric properties were correlated to those measured using dielectric probes. RESULTS: The method was demonstrated both in simulations and in phantom data with correlations to both the modeled and bench measurements being close to identity. The noise properties were modeled and understood. CONCLUSION: The proposed methodology allows to quantitatively determine the electrical properties of a sample using any MR contrast, with the only constraint being the need to have 4 or more receive coils and high SNR. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.
Resumo:
Next-generation sequencing (NGS) technologies have become the standard for data generation in studies of population genomics, as the 1000 Genomes Project (1000G). However, these techniques are known to be problematic when applied to highly polymorphic genomic regions, such as the human leukocyte antigen (HLA) genes. Because accurate genotype calls and allele frequency estimations are crucial to population genomics analyses, it is important to assess the reliability of NGS data. Here, we evaluate the reliability of genotype calls and allele frequency estimates of the single-nucleotide polymorphisms (SNPs) reported by 1000G (phase I) at five HLA genes (HLA-A, -B, -C, -DRB1, and -DQB1). We take advantage of the availability of HLA Sanger sequencing of 930 of the 1092 1000G samples and use this as a gold standard to benchmark the 1000G data. We document that 18.6% of SNP genotype calls in HLA genes are incorrect and that allele frequencies are estimated with an error greater than ±0.1 at approximately 25% of the SNPs in HLA genes. We found a bias toward overestimation of reference allele frequency for the 1000G data, indicating mapping bias is an important cause of error in frequency estimation in this dataset. We provide a list of sites that have poor allele frequency estimates and discuss the outcomes of including those sites in different kinds of analyses. Because the HLA region is the most polymorphic in the human genome, our results provide insights into the challenges of using of NGS data at other genomic regions of high diversity.
Resumo:
Inherited retinal dystrophies are phenotypically and genetically heterogeneous. This extensive heterogeneity poses a challenge when performing molecular diagnosis of patients, especially in developing countries. In this study, we applied homozygosity mapping as a tool to reduce the complexity given by genetic heterogeneity and identify disease-causing variants in consanguineous Pakistani pedigrees. DNA samples from eight families with autosomal recessive retinal dystrophies were subjected to genome wide homozygosity mapping (seven by SNP arrays and one by STR markers) and genes comprised within the detected homozygous regions were analyzed by Sanger sequencing. All families displayed consistent autozygous genomic regions. Sequence analysis of candidate genes identified four previously-reported mutations in CNGB3, CNGA3, RHO, and PDE6A, as well as three novel mutations: c.2656C > T (p.L886F) in RPGRIP1, c.991G > C (p.G331R) in CNGA3, and c.413-1G > A (IVS6-1G > A) in CNGB1. This latter mutation impacted pre-mRNA splicing of CNGB1 by creating a -1 frameshift leading to a premature termination codon. In addition to better delineating the genetic landscape of inherited retinal dystrophies in Pakistan, our data confirm that combining homozygosity mapping and candidate gene sequencing is a powerful approach for mutation identification in populations where consanguineous unions are common.
Resumo:
PURPOSE: According to estimations around 230 people die as a result of radon exposure in Switzerland. This public health concern makes reliable indoor radon prediction and mapping methods necessary in order to improve risk communication to the public. The aim of this study was to develop an automated method to classify lithological units according to their radon characteristics and to develop mapping and predictive tools in order to improve local radon prediction. METHOD: About 240 000 indoor radon concentration (IRC) measurements in about 150 000 buildings were available for our analysis. The automated classification of lithological units was based on k-medoids clustering via pair-wise Kolmogorov distances between IRC distributions of lithological units. For IRC mapping and prediction we used random forests and Bayesian additive regression trees (BART). RESULTS: The automated classification groups lithological units well in terms of their IRC characteristics. Especially the IRC differences in metamorphic rocks like gneiss are well revealed by this method. The maps produced by random forests soundly represent the regional difference of IRCs in Switzerland and improve the spatial detail compared to existing approaches. We could explain 33% of the variations in IRC data with random forests. Additionally, the influence of a variable evaluated by random forests shows that building characteristics are less important predictors for IRCs than spatial/geological influences. BART could explain 29% of IRC variability and produced maps that indicate the prediction uncertainty. CONCLUSION: Ensemble regression trees are a powerful tool to model and understand the multidimensional influences on IRCs. Automatic clustering of lithological units complements this method by facilitating the interpretation of radon properties of rock types. This study provides an important element for radon risk communication. Future approaches should consider taking into account further variables like soil gas radon measurements as well as more detailed geological information.
Resumo:
The cuticle covers the aerial parts of land plants, where it serves many important functions, including water retention. Here, a recessive cuticle mutant, eceriferum-ym (cer-ym), of Hordeum vulgare L. (barley) showed abnormally glossy spikes, sheaths, and leaves. The cer-ym mutant plant detached from its root system was hypersensitive to desiccation treatment compared with wild type plants, and detached leaves of mutant lost 41.8% of their initial weight after 1 h of dehydration under laboratory conditions, while that of the wild type plants lost only 7.1%. Stomata function was not affected by the mutation, but the mutant leaves showed increased cuticular permeability to water, suggesting a defective leaf cuticle, which was confirmed by toluidine blue staining. The mutant leaves showed a substantial reduction in the amounts of the major cutin monomers and a slight increase in the main wax component, suggesting that the enhanced cuticle permeability was a consequence of cutin deficiency. cer-ym was mapped within a 0.8 cM interval between EST marker AK370363 and AK251484, a pericentromeric region on chromosome 4H. The results indicate that the desiccation sensitivity of cer-ym is caused by a defect in leaf cutin, and that cer-ym is located in a chromosome 4H pericentromeric region.
Resumo:
In order to spare functional areas during the removal of brain tumours, electrical stimulation mapping was used in 90 patients (77 in the left hemisphere and 13 in the right; 2754 cortical sites tested). Language functions were studied with a special focus on comprehension of auditory and visual words and the semantic system. In addition to naming, patients were asked to perform pointing tasks from auditory and visual stimuli (using sets of 4 different images controlled for familiarity), and also auditory object (sound recognition) and Token test tasks. Ninety-two auditory comprehension interference sites were observed. We found that the process of auditory comprehension involved a few, fine-grained, sub-centimetre cortical territories. Early stages of speech comprehension seem to relate to two posterior regions in the left superior temporal gyrus. Downstream lexical-semantic speech processing and sound analysis involved 2 pathways, along the anterior part of the left superior temporal gyrus, and posteriorly around the supramarginal and middle temporal gyri. Electrostimulation experimentally dissociated perceptual consciousness attached to speech comprehension. The initial word discrimination process can be considered as an "automatic" stage, the attention feedback not being impaired by stimulation as would be the case at the lexical-semantic stage. Multimodal organization of the superior temporal gyrus was also detected since some neurones could be involved in comprehension of visual material and naming. These findings demonstrate a fine graded, sub-centimetre, cortical representation of speech comprehension processing mainly in the left superior temporal gyrus and are in line with those described in dual stream models of language comprehension processing.