287 resultados para death receptor 5
Resumo:
Engagement of TNF receptor 1 by TNFalpha activates the transcription factor NF-kappaB but can also induce apoptosis. Here we show that upon TNFalpha binding, TNFR1 translocates to cholesterol- and sphingolipid-enriched membrane microdomains, termed lipid rafts, where it associates with the Ser/Thr kinase RIP and the adaptor proteins TRADD and TRAF2, forming a signaling complex. In lipid rafts, TNFR1 and RIP are ubiquitylated. Furthermore, we provide evidence that translocation to lipid rafts precedes ubiquitylation, which leads to the degradation via the proteasome pathway. Interfering with lipid raft organization not only abolishes ubiquitylation but switches TNFalpha signaling from NF-kappaB activation to apoptosis. We suggest that lipid rafts are crucial for the outcome of TNFalpha-activated signaling pathways.
Resumo:
Using immunohistochemistry in combination with confocal laser scanning microscopy, we studied the ontogeny of neuropeptide Y-Y1 receptor (Y1-R) expression in the trigeminal system of the rat. The study was limited to the nerve fibers innervating the mystacial pad and the trigeminal ganglia. In the trigeminal ganglia, Y1-R-immunoreactive (IR) neurons were first observed at E16.5. At this same stage some nerve fibers in the trigeminal ganglia also exhibited Y1-R-like immunoreactivity (LI). Strongly Y1-R-IR nerve fibers innervating the follicles of the mystacial vibrissae were first observed at E18. After double labeling, the Y1-R-LI was found to be colocalized with the neuronal marker protein gene product 9.5. At P1 only weak labeling for the Y1-R was found around the vibrissae follicles, whereas the neurons in the trigeminal ganglia were intensely labeled. The same was true for the adult rat, but at this stage no Y1-R labeling at all was observed in nerve fibers around the vibrissal follicles. These results strongly support an axonal localization of the Y1-R at this developmental stage. The transient expression of the Y1-R during prenatal mystacial pad development suggests a role for the Y1-R in the functional development of the vibrissae.
Resumo:
Tasosartan is a long-acting angiotensin II (AngII) receptor blocker. Its long duration of action has been attributed to its active metabolite enoltasosartan. In this study we evaluated the relative contribution of tasosartan and enoltasosartan to the overall pharmacological effect of tasosartan. AngII receptor blockade effect of single doses of tasosartan (100 mg p.o. and 50 mg i.v) and enoltasosartan (2.5 mg i.v.) were compared in 12 healthy subjects in a randomized, double blind, three-period crossover study using two approaches: the in vivo blood pressure response to exogenous AngII and an ex vivo AngII radioreceptor assay. Tasosartan induced a rapid and sustained blockade of AngII subtype-1 (AT1) receptors. In vivo, tasosartan (p.o. or i.v.) blocked by 80% AT1 receptors 1 to 2 h after drug administration and still had a 40% effect at 32 h. In vitro, the blockade was estimated to be 90% at 2 h and 20% at 32 h. In contrast, the blockade induced by enoltasosartan was markedly delayed and hardly reached 60 to 70% despite the i.v. administration and high plasma levels. In vitro, the AT1 antagonistic effect of enoltasosartan was markedly influenced by the presence of plasma proteins, leading to a decrease in its affinity for the receptor and a slower receptor association rate. The early effect of tasosartan is due mainly to tasosartan itself with little if any contribution of enoltasosartan. The antagonistic effect of enoltasosartan appears later. The delayed in vivo blockade effect observed for enoltasosartan appears to be due to a high and tight protein binding and a slow dissociation process from the carrier.
Resumo:
Using a direct binding assay based on photoaffinity labeling, we studied the interaction of T cell receptor (TCR) with a Kd-bound photoreactive peptide derivative on living cells. The Kd-restricted Plasmodium berghei circumsporozoite (PbCS) peptide 253-260 (YIPSAEKI) was reacted NH2-terminally with biotin and at the TCR contact residue Lys259 with photoreactive iodo, 4-azido salicylic acid (IASA) to make biotin-YIPSAEK(IASA)I. Cytotoxic T lymphocyte (CTL) clones derived from mice immunized with this derivative recognized this conjugate, but not a related one lacking the IASA group nor the parental PbCS peptide. The clones were Kd restricted. Recognition experiments with variant conjugates, lacking substituents from IASA, revealed a diverse fine specificity pattern and indicated that this group interacted directly with the TCR. The TCR of four clones could be photoaffinity labeled by biotin-YIPSAEK(125IASA)I. This labeling was dependent on the conjugates binding to the Kd molecule and was selective for the TCR alpha (2 clones) or beta chain (1 clone), or was common for both chains (1 clone). TCR sequence analysis showed a preferential usage of J alpha TA28 containing alpha chains that were paired with V beta 1 expressing beta chains. The TCR that were photoaffinity labeled at the alpha chain expressed these J alpha and V beta segments. The tryptophan encoded by the J alpha TA28 segment is rarely found in other J alpha segments. Moreover, we show that the IASA group interacts preferentially with tryptophan in aqueous solution. We thus propose that for these CTL clones, labeling of the alpha chain occurs via the J alpha-encoded tryptophan residue.
Resumo:
In order to characterize the gene encoding the ligand binding (1(st); alpha) chain of the human IFN-gamma receptor, two overlapping cosmid clones were analyzed. The gene spans over 25 kilobases (kb) of the genomic DNA and has seven exons. The extracellular domain is encoded by exons 1 to 5 and by part of exon 6. The transmembrane region is also encoded by exon 6. Exon 7 encodes the intracellular domain and the 3' untranslated portion. The gene was located on chromosome 6q23.1, as determined by in situ hybridization. The 4 kb region upstream (5') of the gene was sequenced and analyzed for promoter activity. No consensus-matching TATA or CAAT boxes in the 5' region were found. Potential binding sites for Sp1, AP-1, AP-2, and CREB nuclear factors were identified. Compatible with the presence of the Sp1/AP-2 sites and the lack of TATA box, S1-nuclease mapping experiments showed multiple transcription initiation sites. Promoter activity of the 5' flanking region was analyzed with two different reporter genes: the Escherichia coli chloramphenicol acetyltransferase and human growth hormone. The smallest 5' region of the gene that still had full promoter activity was 692 base pairs in length. In addition, we found sequences belonging to the oldest family of Alu repeats, 2 - 3 kb upstream of the gene, which could be useful for genetic studies.
Resumo:
The aim of this investigation was to examine the interrelation between renal mRNA levels of renin and angiotensin II receptor type 1 (AT1) in a renin-dependent form of experimental hypertension. Rats were studied 4 weeks after unilateral renal artery clipping. Mean blood pressure and plasma renin activity were significantly higher in the hypertensive rats (n = 10 206 +/- mm Hg and 72.4 +/- 20.9 ng/mL-1/h-1, respectively) than in sham-operated controls (n = 10, 136 +/- 3 mm Hg and 3.3 +/- 0.5 ng/mL-1/h, respectively). Northern blot analysis of polyA+ RNA obtained from the kidneys of renal hypertensive rats showed increased levels of renin mRNA in the clipped kidney, whereas a decrease was observed in the unclipped kidney. Plasma renin activity was directly correlated with renin mRNA expression of the poststenotic kidney (r = .94, P < .01). AT1 mRNA expression was lower in both kidneys of the hypertensive rats. This downregulation was specific for the AT1A subtype since the renal expression of the AT1B subtype remained normal in hypertensive rats. The downregulation of the renal AT1A receptor may be due to high circulating angiotensin II levels. This is supported by the significant inverse correlation (r = .71, P < .01) between plasma renin activity and AT1A mRNA expression measured in the clipped kidney of the hypertensive rats.
Resumo:
Death receptors belong to the TNF receptor family and are characterised by an intracellular death domain that serves to recruit adapter proteins such as TRADD and FADD and cysteine proteases such as Caspase-8. Activation of Caspase-8 on the aggregated receptor leads to apoptosis. Triggering of death receptors is mediated through the binding of specific ligands of the TNF family, which are homotrimeric type-2 membrane proteins displaying three receptor binding sites. There are various means of modulating the activation of death receptors. The status of the ligand (membrane-bound vs. soluble) is critical in the activation of Fas and of TRAIL receptors. Cleavage of membrane-bound FasL to a soluble form (sFasL) does not affect its ability to bind to Fas but drastically decreases its cytotoxic activity. Conversely, cross-linking epitope-tagged sFasL with anti-tag antibodies to mimic membrane-bound ligand results in a 1000-fold increase in cytotoxicity. This suggests that more than three Fas molecules need to be aggregated to efficiently signal apoptosis. Death receptors can also be regulated by decoy receptors. The cytotoxic ligand TRAIL interacts with five receptors, only two of which (TRAIL-R1 and -R2) have a death domain. TRAIL-R3 is anchored to the membrane by a glycolipid and acts as a dominant negative inhibitor of TRAIL-mediated apoptosis when overexpressed on TRAIL-sensitive cells. Intracellular proteins interacting with the apoptotic pathway are potential modulators of death receptors. FLIP resembles Caspase-8 in structure but lacks protease activity. It interacts with both FADD and Caspase-8 to inhibits the apoptotic signal of death receptors and, at the same time, can activate other signalling pathways such as that leading to NF-kappa B activation.
Resumo:
A long-standing controversy is whether autophagy is a bona fide cause of mammalian cell death. We used a cell-penetrating autophagy-inducing peptide, Tat-Beclin 1, derived from the autophagy protein Beclin 1, to investigate whether high levels of autophagy result in cell death by autophagy. Here we show that Tat-Beclin 1 induces dose-dependent death that is blocked by pharmacological or genetic inhibition of autophagy, but not of apoptosis or necroptosis. This death, termed "autosis," has unique morphological features, including increased autophagosomes/autolysosomes and nuclear convolution at early stages, and focal swelling of the perinuclear space at late stages. We also observed autotic death in cells during stress conditions, including in a subpopulation of nutrient-starved cells in vitro and in hippocampal neurons of neonatal rats subjected to cerebral hypoxia-ischemia in vivo. A chemical screen of ~5,000 known bioactive compounds revealed that cardiac glycosides, antagonists of Na(+),K(+)-ATPase, inhibit autotic cell death in vitro and in vivo. Furthermore, genetic knockdown of the Na(+),K(+)-ATPase ^5;1 subunit blocks peptide and starvation-induced autosis in vitro. Thus, we have identified a unique form of autophagy-dependent cell death, a Food and Drug Administration-approved class of compounds that inhibit such death, and a crucial role for Na(+),K(+)-ATPase in its regulation. These findings have implications for understanding how cells die during certain stress conditions and how such cell death might be prevented.
Resumo:
Cell death is achieved by two fundamentally different mechanisms: apoptosis and necrosis. Apoptosis is dependent on caspase activation, whereas the caspase-independent necrotic signaling pathway remains largely uncharacterized. We show here that Fas kills activated primary T cells efficiently in the absence of active caspases, which results in necrotic morphological changes and late mitochondrial damage but no cytochrome c release. This Fas ligand-induced caspase-independent death is absent in T cells that are deficient in either Fas-associated death domain (FADD) or receptor-interacting protein (RIP). RIP is also required for necrotic death induced by tumor necrosis factor (TNF) and TNF-related apoptosis-inducing ligand (TRAIL). In contrast to its role in nuclear factor kappa B activation, RIP requires its own kinase activity for death signaling. Thus, Fas, TRAIL and TNF receptors can initiate cell death by two alternative pathways, one relying on caspase-8 and the other dependent on the kinase RIP.
Resumo:
1. We compared the changes in binding energy generated by two mutations that shift in divergent directions the constitutive activity of the human beta(2) adrenergic receptor (beta(2)AR). 2. A constitutively activating mutant (CAM) and the double alanine replacement (AA mutant) of catechol-binding serines (S204A, S207A) in helix 5 were stably expressed in CHO cell lines, and used to measure the binding affinities of more than 40 adrenergic ligands. Moreover, the efficacy of the same group of compounds was determined as intrinsic activity for maximal adenylyl cyclase stimulation in wild-type beta(2)AR. 3. Although the two mutations had opposite effects on ligand affinity, the extents of change were in both cases largely correlated with the degree of ligand efficacy. This was particularly evident if the extra loss of binding energy due to hydrogen bond deletion in the AA mutant was taken into account. Thus the data demonstrate that there is an overall linkage between the configuration of the binding pocket and the intrinsic equilibrium between active and inactive receptor forms. 4. We also found that AA mutation-induced affinity changes for catecholamine congeners gradually lacking ethanolamine substituents were linearly correlated to the loss of affinity that such modifications of the ligand cause for wild-type receptor. This indicates that the strength of bonds between catechol ring and helix 5 is critically dependent on the rest of interactions of the beta-ethanolamine tail with other residues of the beta(2)-AR binding pocket.
Resumo:
Neuropeptide Y (NPY) is a potent inhibitor of neurotransmitter release through the Y2 receptor subtype. Specific antagonists for the Y2 receptors have not yet been described. Based on the concept of template-assembled synthetic proteins we have used a cyclic template molecule containing two beta-turn mimetics for covalent attachment of four COOH-terminal fragments RQRYNH2 (NPY 33-36), termed T4-[NPY(33-36)]4. This structurally defined template-assembled synthetic protein has been tested for binding using SK-N-MC and LN319 cell lines that express the Y1 and Y2 receptor, respectively. T4-[NPY(33-36)]4 binds to the Y2 receptor with high affinity (IC50 = 67.2 nM) and has poor binding to the Y1 receptor. This peptidomimetic tested on LN319 cells at concentrations up to 10 microM shows no inhibitory effect on forskolin-stimulated cAMP levels (IC50 for NPY = 2.5 nM). Furthermore, we used confocal microscopy to examine the NPY-induced increase in intracellular calcium in single LN319 cells. Preincubation of the cells with T4-[NPY(33-36)]4 shifted to the right the dose-response curves for intracellular mobilization of calcium induced by NPY at concentrations ranging from 0.1 nM to 10 microM. Finally, we assessed the competitive antagonistic properties of T4-[NPY(33-36)]4 at presynaptic peptidergic Y2 receptors modulating noradrenaline release. the compound T4-[NPY(33-36)]4 caused a marked shift to the right of the concentration-response curve of NPY 13-36, a Y2-selective fragment, yielding a pA2 value of 8.48. Thus, to our best knowledge, T4-[NPY(33-36)]4 represents the first potent and selective Y2 antagonist.
Resumo:
Tumor necrosis factor (TNF) ligand and receptor superfamily members play critical roles in diverse developmental and pathological settings. In search for novel TNF superfamily members, we identified a murine chromosomal locus that contains three new TNF receptor-related genes. Sequence alignments suggest that the ligand binding regions of these murine TNF receptor homologues, mTNFRH1, -2 and -3, are most homologous to those of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors. By using a number of in vitro ligand-receptor binding assays, we demonstrate that mTNFRH1 and -2, but not mTNFRH3, bind murine TRAIL, suggesting that they are indeed TRAIL receptors. This notion is further supported by our demonstration that both mTNFRH1:Fc and mTNFRH2:Fc fusion proteins inhibited mTRAIL-induced apoptosis of Jurkat cells. Unlike the only other known murine TRAIL receptor mTRAILR2, however, neither mTNFRH2 nor mTNFRH3 has a cytoplasmic region containing the well characterized death domain motif. Coupled with our observation that overexpression of mTNFRH1 and -2 in 293T cells neither induces apoptosis nor triggers NFkappaB activation, we propose that the mTnfrh1 and mTnfrh2 genes encode the first described murine decoy receptors for TRAIL, and we renamed them mDcTrailr1 and -r2, respectively. Interestingly, the overall sequence structures of mDcTRAILR1 and -R2 are quite distinct from those of the known human decoy TRAIL receptors, suggesting that the presence of TRAIL decoy receptors represents a more recent evolutionary event.
Resumo:
Insulin resistance in obesity is partly due to diminished glucose transport in myocytes and adipocytes, but underlying mechanisms are uncertain. Insulin-stimulated glucose transport requires activation of phosphatidylinositol (PI) 3-kinase (3K), operating downstream of insulin receptor substrate-1. PI3K stimulates glucose transport through increases in PI-3,4,5-(PO(4))(3) (PIP(3)), which activates atypical protein kinase C (aPKC) and protein kinase B (PKB/Akt). However, previous studies suggest that activation of aPKC, but not PKB, is impaired in intact muscles and cultured myocytes of obese subjects. Presently, we examined insulin activation of glucose transport and signaling factors in cultured adipocytes derived from preadipocytes harvested during elective liposuction in lean and obese women. Relative to adipocytes of lean women, insulin-stimulated [(3)H]2-deoxyglucose uptake and activation of insulin receptor substrate-1/PI3K and aPKCs, but not PKB, were diminished in adipocytes of obese women. Additionally, the direct activation of aPKCs by PIP(3) in vitro was diminished in aPKCs isolated from adipocytes of obese women. Similar impairment in aPKC activation by PIP(3) was observed in cultured myocytes of obese glucose-intolerant subjects. These findings suggest the presence of defects in PI3K and aPKC activation that persist in cultured cells and limit insulin-stimulated glucose transport in adipocytes and myocytes of obese subjects.
Resumo:
We have shown previously that voluntary ethanol consumption and resistance to ethanol-induced sedation are inversely related to neuropeptide Y (NPY) levels in NPY-knock-out (NPY(-/-)) and NPY-overexpressing mice. In the present report, we studied knock-out mice completely lacking the NPY Y1 receptor (Y1(-/-)) to further characterize the role of the NPY system in ethanol consumption and neurobiological responses to this drug. Here we report that male Y1(-/-) mice showed increased consumption of solutions containing 3, 6, and 10% (v/v) ethanol when compared with wild-type (Y1(+/+)) control mice. Female Y1(-/-) mice showed increased consumption of a 10% ethanol solution. In contrast, Y1(-/-) mice showed normal consumption of solutions containing either sucrose or quinine. Relative to Y1(+/+) mice, male Y1(-/-) mice were found to be less sensitive to the sedative effects of 3.5 and 4.0 gm/kg ethanol as measured by more rapid recovery from ethanol-induced sleep, although plasma ethanol levels did not differ significantly between the genotypes. Finally, male Y1(-/-) mice showed normal ethanol-induced ataxia on the rotarod test after administration of a 2.5 gm/kg dose. These data suggest that the NPY Y1 receptor regulates voluntary ethanol consumption and some of the intoxicating effects caused by administration of ethanol.
Resumo:
1. The major side effects of the immunosuppressive drug cyclosporin A (CsA) are hypertension and nephrotoxicity. It is likely that both are caused by local vasoconstriction. 2. We have shown previously that 20 h treatment of rat vascular smooth muscle cells (VSMC) with therapeutically relevant CsA concentrations increased the cellular response to [Arg8]vasopressin (AVP) by increasing about 2 fold the number of vasopressin receptors. 3. Displacement experiments using a specific antagonist of the vasopressin V1A receptor (V1AR) showed that the vasopressin binding sites present in VSMC were exclusively receptors of the V1A subtype. 4. Receptor internalization studies revealed that CsA (10(-6) M) did not significantly alter AVP receptor trafficking. 5. V1AR mRNA was increased by CsA, as measured by quantitative polymerase chain reaction. Time-course studies indicated that the increase in mRNA preceded cell surface expression of the receptor, as measured by hormone binding. 6. A direct effect of CsA on the V1AR promoter was investigated using VSMC transfected with a V1AR promoter-luciferase reporter construct. Surprisingly, CsA did not increase, but rather slightly reduced V1AR promoter activity. This effect was independent of the cyclophilin-calcineurin pathway. 7. Measurement of V1AR mRNA decay in the presence of the transcription inhibitor actinomycin D revealed that CsA increased the half-life of V1AR mRNA about 2 fold. 8. In conclusion, CsA increased the response of VSMC to AVP by upregulating V1AR expression through stabilization of its mRNA. This could be a key mechanism in enhanced vascular responsiveness induced by CsA, causing both hypertension and, via renal vasoconstriction, reduced glomerular filtration.