143 resultados para dark matter simulations
Resumo:
In humans, action errors and perceptual novelty elicit activity in a shared frontostriatal brain network, allowing them to adapt their ongoing behavior to such unexpected action outcomes. Healthy and pathologic aging reduces the integrity of white matter pathways that connect individual hubs of such networks and can impair the associated cognitive functions. Here, we investigated whether structural disconnection within this network because of small-vessel disease impairs the neural processes that subserve motor slowing after errors and novelty (post-error slowing, PES; post-novel slowing, PNS). Participants with intact frontostriatal circuitry showed increased right-lateralized beta-band (12-24 Hz) synchrony between frontocentral and frontolateral electrode sites in the electroencephalogram after errors and novelty, indexing increased neural communication. Importantly, this synchrony correlated with PES and PNS across participants. Furthermore, such synchrony was reduced in participants with frontostriatal white matter damage, in line with reduced PES and PNS. The results demonstrate that behavioral change after errors and novelty result from coordinated neural activity across a frontostriatal brain network and that such cognitive control is impaired by reduced white matter integrity.
Resumo:
Technical developments have made it possible to analyze very low amounts of DNA. This has many advantages, but the drawback of this technological progress is that interpretation of the results becomes increasingly complex: the number of mixed DNA profiles increased relatively to single source DNA profiles and stochastic effects in the DNA profile, such as drop-in and drop-out, are more frequently observed. Moreover, the relevance of low template DNA material regarding the activities alleged is not as straightforward as it was a few years ago, when for example large quantities of blood were recovered. The possibility of secondary and tertiary transfer is now becoming an issue. The purpose of this research is twofold: first, to study the transfer of DNA from the handler and secondly, to observe if handlers would transfer DNA from persons closely connected to them. We chose to mimic cases where the offender would attack a person with a knife. As a first approach, we envisaged that the defense would not give an alternative explanation for the origin of the DNA. In our transfer experiments (4 donors, 16 experiments each, 64 traces), 3% of the traces were single DNA profiles. Most of the time, the DNA profile of the person handling the knife was present as the major profile: in 83% of the traces the major contributor profile corresponded to the stabber's DNA profile (in single stains and mixtures). Mixture with no clear major/minor fraction (12%) were observed. 5% of the traces were considered of insufficient quality (more than 3 contributors, presence of a few minor peaks). In that case, we considered that the stabber's DNA was absent. In our experiments, no traces allowed excluding the stabber, however it must be noted that precautions were taken to minimize background DNA as knives were cleaned before the experiments. DNA profiles of the stabber's colleagues were not observed. We hope that this study will allow for a better understanding of the transfer mechanism and of how to assess and describe results given activity level propositions. In this preliminary research, we have focused on the transfer of DNA on the hand of the person. Besides, more research is needed to assign the probability of the results given an alternative activity proposed by the defense, for instance when the source of the DNA is not contested, but that the activities are.
Resumo:
The study intended to determine motivational profiles of first-year undergraduates and aimed their characterization in terms of identity processes. First, a cluster analysis revealed five motivational profiles: combined (i.e., high quantity of motivation, low amotivation); intrinsic (i.e., high intrinsic, low introjected and external regulation, low amotivation); "demotivated" (i.e., very low quantity of motivation and amotivation); extrinsic (i.e., high extrinsic and identified regulation and low intrinsic and amotivation); and "amotivated" (i.e., low intrinsic and identified, very high amotivation). Second, using Lebart's (2000) methodology, the most characteristic identity processes were listed for each motivational cluster. Demotivated and amotivated profiles were refined in terms of adaptive and maladaptive forms of exploration. Notably, exploration in breadth and in depth were underrepresented in demotivated students compared to the total sample; commitment and ruminative exploration were under and overrepresented respectively in amotivated students. Educational and clinical implications are proposedand future research is suggested.
Resumo:
Aim: Emerging polyploids may depend on environmental niche shifts for successful establishment. Using the alpine plant Ranunculus kuepferi as a model system, we explore the niche shift hypothesis at different spatial resolutions and in contrasting parts of the species range. Location: European Alps. Methods: We sampled 12 individuals from each of 102 populations of R. kuepferi across the Alps, determined their ploidy levels, derived coarse-grain (100x100m) environmental descriptors for all sampling sites by downscaling WorldClim maps, and calculated fine-scale environmental descriptors (2x2m) from indicator values of the vegetation accompanying the sampled individuals. Both coarse and fine-scale variables were further computed for 8239 vegetation plots from across the Alps. Subsequently, we compared niche optima and breadths of diploid and tetraploid cytotypes by combining principal components analysis and kernel smoothing procedures. Comparisons were done separately for coarse and fine-grain data sets and for sympatric, allopatric and the total set of populations. Results: All comparisons indicate that the niches of the two cytotypes differ in optima and/or breadths, but results vary in important details. The whole-range analysis suggests differentiation along the temperature gradient to be most important. However, sympatric comparisons indicate that this climatic shift was not a direct response to competition with diploid ancestors. Moreover, fine-grained analyses demonstrate niche contraction of tetraploids, especially in the sympatric range, that goes undetected with coarse-grained data. Main conclusions: Although the niche optima of the two cytotypes differ, separation along ecological gradients was probably less decisive for polyploid establishment than a shift towards facultative apomixis, a particularly effective strategy to avoid minority cytotype exclusion. In addition, our results suggest that coarse-grained analyses overestimate niche breadths of widely distributed taxa. Niche comparison analyses should hence be conducted at environmental data resolutions appropriate for the organism and question under study.