156 resultados para cytokines and cell activation
Resumo:
MicroRNAs (miRNAs) are small, noncoding RNAs that regulate target mRNAs by binding to their 3' untranslated regions. There is growing evidence that microRNA-155 (miR155) modulates gene expression in various cell types of the immune system and is a prominent player in the regulation of innate and adaptive immune responses. To define the role of miR155 in dendritic cells (DCs) we performed a detailed analysis of its expression and function in human and mouse DCs. A strong increase in miR155 expression was found to be a general and evolutionarily conserved feature associated with the activation of DCs by diverse maturation stimuli in all DC subtypes tested. Analysis of miR155-deficient DCs demonstrated that miR155 induction is required for efficient DC maturation and is critical for the ability of DCs to promote antigen-specific T-cell activation. Expression-profiling studies performed with miR155(-/-) DCs and DCs overexpressing miR155, combined with functional assays, revealed that the mRNA encoding the transcription factor c-Fos is a direct target of miR155. Finally, all of the phenotypic and functional defects exhibited by miR155(-/-) DCs could be reproduced by deregulated c-Fos expression. These results indicate that silencing of c-Fos expression by miR155 is a conserved process that is required for DC maturation and function.
Resumo:
Recognition by the T-cell receptor (TCR) of immunogenic peptides (p) presented by class I major histocompatibility complexes (MHC) is the key event in the immune response against virus infected cells or tumor cells. The major determinant of T cell activation is the affinity of the TCR for the peptide-MHC complex, though kinetic parameters are also important. A study of the 2C TCR/SIYR/H-2Kb system using a binding free energy decomposition (BFED) based on the MM-GBSA approach had been performed to assess the performance of the approach on this system. The results showed that the TCR-p-MHC BFED including entropic terms provides a detailed and reliable description of the energetics of the interaction (Zoete and Michielin, 2007). Based on these results, we have developed a new approach to design sequence modifications for a TCR recognizing the human leukocyte antigen (HLA)-A2 restricted tumor epitope NY-ESO-1. NY-ESO-1 is a cancer testis antigen expressed not only in melanoma, but also on several other types of cancers. It has been observed at high frequencies in melanoma patients with unusually positive clinical outcome and, therefore, represents an interesting target for adoptive transfer with modified TCR. Sequence modifications of TCR potentially increasing the affinity for this epitope have been proposed and tested in vitro. T cells expressing some of the proposed TCR mutants showed better T cell functionality, with improved killing of peptide-loaded T2 cells and better proliferative capacity compared to the wild type TCR expressing cells. These results open the door of rational TCR design for adoptive transfer cancer therapy.
Resumo:
Prostaglandin E-2 (PGE(2)) promotes angiogenesis by in part inducing endothelial cell survival and migration. The present study examined the role of mTOR and its two complexes, mTORC1 and mTORC2, in PGE(2)-mediated endothelial cell responses. We used small interfering RNA (siRNA) to raptor or rictor to block mTORC1 or mTORC2, respectively. We observed that down-regulation of mTORC2 but not mTORC1 reduced baseline and PGE(2)-induced endothelial cell survival and migration. At the molecular level, we found that knockdown of mTORC2 inhibited PGE2-mediated Rac and Akt activation two important signaling intermediaries in endothelial cell migration and survival, respectively. In addition, inhibition of mTORC2 by prolonged exposure of endothelial cells to rapamycin also prevented PGE2-mediated endothelial cell survival and migration confirming the results obtained with the siRNA approach. Taken together these results show that mTORC2 but not mTORC1 is an important signaling intermediary in PGE2-mediated endothelial cell responses.
Resumo:
Owing to its high fat content, the classical Western diet has a range of adverse effects on the heart, including enhanced inflammation, hypertrophy, and contractile dysfunction. Proinflammatory factors secreted by cardiac cells, which are under the transcriptional control of nuclear factor-κB (NF-κB), may contribute to heart failure and dilated cardiomyopathy. The underlying mechanisms are complex, since they are linked to systemic metabolic abnormalities and changes in cardiomyocyte phenotype. Peroxisome proliferator-activated receptors (PPARs) are transcription factors that regulate metabolism and are capable of limiting myocardial inflammation and hypertrophy via inhibition of NF-κB. Since PPARβ/δ is the most prevalent PPAR isoform in the heart, we analyzed the effects of the PPARβ/δ agonist GW501516 on inflammatory parameters. A high-fat diet induced the expression of tumor necrosis factor-α, monocyte chemoattractant protein-1, and interleukin-6, and enhanced the activity of NF-κB in the heart of mice. GW501516 abrogated this enhanced proinflammatory profile. Similar results were obtained when human cardiac AC16 cells exposed to palmitate were coincubated with GW501516. PPARβ/δ activation by GW501516 enhanced the physical interaction between PPARβ/δ and p65, which suggests that this mechanism may also interfere NF-κB transactivation capacity in the heart. GW501516-induced PPARβ/δ activation can attenuate the inflammatory response induced in human cardiac AC16 cells exposed to the saturated fatty acid palmitate and in mice fed a high-fat diet. This is relevant, especially taking into account that PPARβ/δ has been postulated as a potential target in the treatment of obesity and the insulin resistance state.
Resumo:
Cancer immunotherapy has great promise, but is limited by diverse mechanisms used by tumors to prevent sustained antitumor immune responses. Tumors disrupt antigen presentation, T/NK-cell activation, and T/NK-cell homing through soluble and cell-surface mediators, the vasculature, and immunosuppressive cells such as myeloid-derived suppressor cells and regulatory T cells. However, many molecular mechanisms preventing the efficacy of antitumor immunity have been identified and can be disrupted by combination immunotherapy. Here, we examine immunosuppressive mechanisms exploited by tumors and provide insights into the therapies under development to overcome them, focusing on lymphocyte traffic.
Resumo:
α-Crystallins, initially described as the major structural proteins of the lens, belong to the small heat shock protein family. Apart from their function as chaperones, α-crystallins are involved in the regulation of intracellular apoptotic signals. αA- and αB-crystallins have been shown to interfere with the mitochondrial apoptotic pathway triggering Bax pro-apoptotic activity and downstream activation of effector caspases. Differential regulation of α-crystallins has been observed in several eye diseases such as age-related macular degeneration and stress-induced and inherited retinal degenerations. Although the function of α-crystallins in healthy and diseased retina remains poorly understood, their altered expression in pathological conditions argue in favor of a role in cellular defensive response. In the Rpe65(-/-) mouse model of Leber's congenital amaurosis, we previously observed decreased expression of αA- and αB-crystallins during disease progression, which was correlated with Bax pro-death activity and photoreceptor apoptosis. In the present study, we demonstrated that α-crystallins interacted with pro-apoptotic Bax and displayed cytoprotective action against Bax-triggered apoptosis, as assessed by TUNEL and caspase assays. We further observed in staurosporine-treated photoreceptor-like 661W cells stably overexpressing αA- or αB-crystallin that Bax-dependent apoptosis and caspase activation were inhibited. Finally, we reported that the C-terminal extension domain of αA-crystallin was sufficient to provide protection against Bax-triggered apoptosis. Altogether, these data suggest that α-crystallins interfere with Bax-induced apoptosis in several cell types, including the cone-derived 661W cells. They further suggest that αA-crystallin-derived peptides might be sufficient to promote cytoprotective action in response to apoptotic cell death.
Resumo:
Ligation of antigen receptors (TCR, BCR) on T and B lymphocytes leads to the activation of new transcriptional programs and cell cycle progression. Antigen receptor-mediated activation of NF-kappa B, required for proliferation of B and T cells, is disrupted in T cells lacking PKC theta and in B and T cells lacking Bcl10, a caspase recruitment domain (CARD)-containing adaptor protein. CARMA1 (also called CARD11 and Bimp3), the only lymphocyte-specific member in a family of membrane-associated guanylate kinase (MAGUK) scaffolding proteins that interact with Bcl10 by way of CARD-CARD interactions, is required for TCR-induced NF-kappa B activation in Jurkat T lymphoma cells. Here we show that T cells from mice lacking CARMA1 expression were defective in recruitment of Bcl10 to clustered TCR complexes and lipid rafts, in activation of NF-kappa B, and in induction of IL-2 production. Development of CD5(+) peritoneal B cells was disrupted in these mice, as was B cell proliferation in response to both BCR and CD40 ligation. Serum immunoglobulin levels were also markedly reduced in the mutant mice. Together, these results show that CARMA1 has a central role in antigen receptor signaling that results in activation and proliferation of both B and T lymphocytes.
Resumo:
The isolation of subsets of Ag-specific T cells for in vitro and in vivo studies by FACS is compromised by the fact that the soluble MHC-peptide complexes and Abs used for staining, especially when combined, induce unwanted T cell activation and eventually apoptosis. This is especially a problem for CD8+ CTL, which are susceptible to activation-dependent cell death. In this study, we show that reversible MHC-peptide complexes (tetramers) can be prepared by conjugating MHC-peptide monomers with desthiobiotin (DTB; also called dethiobiotin) and multimerization by reaction with fluorescent streptavidin. While in the cold these reagents are stable and allow good staining, they rapidly dissociate in monomers at elevated temperatures, especially in the presence of free biotin. FACS cloning of Melan-A (MART-1)-specific CTL from a melanoma-infiltrated lymph node with reversible HLA-A2 Melan-A26-35 multimers yielded over two times more clones than when using the conventional biotin-containing multimers. CTL clones obtained by means of reversible multimers killed Melan-A-positive tumor cells more efficiently as compared with clones obtained with the stable multimers. Among the CTL obtained with the reversible multimers, but much less among those obtained with the stable multimers, a high proportion of clones exhibited high functional and physical avidity and died upon incubation with soluble MHC-peptide complexes. Finally, we show that Fab' of an anti-CD8 Ab can be converted in reversible DTB streptavidin conjugates the same way. These DTB reagents efficiently and reversibly stained murine and human CTL without affecting their viability.
Resumo:
SummarySecondary lymphoid organs, such as lymph nodes or spleen, are the only places in our body where primary adaptive immune responses are efficiently elicited. These organs have distinct Β and Τ cell rich zones and Τ lymphocytes constantly migrate from the bloodstream into Τ zones to scan dendritic cells (DCs) for antigens they present. Specialized fibroblasts, the Τ zone reticular cells (HR.Cs), span the Τ zone in the form a three-dimensional network. lK.Cs guide incoming Τ cells in their migration, both chemically, by the secretion of the chemokines CCL19 and CCL21, and physically, by construction of a road system to which also DCs adhere. In this way TRCs are thought to facilitate encounters of Τ cells with antigen-bearing DCs and thereby accelerate the selection of rare antigen-specific Τ cells. The resulting Τ cell activation, proliferation and differentiation all take place within the TRC network. However, the influence of TRCs on Τ cell activation has so fer not been elucidated with the possible reasons being that TRCs represent a relative rare cell population and that mice devoid of TRCs have not been described.To circumvent these technical limitations, we established TRC clones and lines to have an abundant source to functionally characterize TRCs. Both the clones and lines show a fibroblastic phenotype, express a surface marker profile comparable to ex vivo TRCs and produce extracellular matrix molecules. However, expression of Ccl19, Ccl21 and ZL-7 is lost and could not be restored by cytokine stimulation. When these TRC clones or lines were cultured in a three-dimensional cell culture system, their morphology changed and resembled that of in vivo TRCs as they formed networks. By adding Τ cells and antigen-loaded DCs to these cultures we successfully reconstructed lymphoid Τ zones that allowed antigen-specific Τ cell activation.To characterize the role of TRCs in Τ cell priming, TRCs were co-cultured with antigen-specific Τ cells in the presence antigen-loaded DCs. Surprisingly, the presence of TRC lines and ex vivo TRCs inhibited rather than enhanced CD8+ Τ cell activation, proliferation and effector cell differentiation. TRCs shared this feature with fibroblasts from non-lymphoid tissues as well as mesenchymal stromal cells. TRCs were identified as a strong source of nitric oxide (NO) thereby directly dampening Τ cell expansion as well as reducing the Τ cell priming capacity of DCs. The expression of inducible NO synthase (iNOS) was up- regulated in a subset of TRCs by both DC-signals as well as interferon-γ produced by primed CD8+ Τ cells. Importantly, iNOS expression was induced during viral infection in vivo in both lymph node TRCs and DCs. Consistent with a role for NO as a negative regulator, the primary Τ cell response was exaggerated in iNOS-/- mice. Our findings highlight that in addition to their established positive roles in Τ cell responses TRCs and DCs cooperate in a negative feedback loop to attenuate Τ cell expansion during acute inflammation.RésuméLes organes lymphoïdes secondaires, comme les ganglions lymphoïdes ou la rate, sont les seuls sites dans notre corps où la réponse primaire des lymphocytes Β et Τ est initiée efficacement. Ces organes ont des zones différentes, riches en cellules Β ou T. Des lymphocytes Τ circulent constamment du sang vers les zones T, où ils échantillonent la surface des cellules dendritiques (DCs) pour identifier les antigènes qu'ils présentent. Des fibroblastes spécialisés - nommés Τ zone reticular cells (TRCs)' forment un réseau tridimensionnel dans la zone T. Les TRCs guident la migration des cellules Τ par deux moyens: chimiquement, par la sécrétion des chimiokines CCL19 et CCL21 et physiquement, par la construction d'un réseau routier en trois dimensions, auquel adhèrent aussi des DCs. Dans ce? cas, on pense que la présence des TRCs facilite les rencontres entre les cellules Τ et les DCs chargées de l'antigène et accélère la sélection des rares cellules Τ spécifiques. Ensuite, l'activation de cellules T, ainsi que la prolifération et la différenciation se produisent toutes à l'intérieur du réseau des TRCs. L'influence des TRCs sur l'activation des cellules T n'est que très peu caractérisée, en partie parce que les TRCs représentent une population rare et que les souris déficientes dans les TRCs n'ont pas encore été découvertes.Pour contourner ces limitations techniques, nous avons établi des clones et des lignées cellulaires de TRC pour obtenir une source indéfinie de ces cellules permettant leur caractérisation fonctionnelle. Les clones et lignées établis ont un phénotype de fibroblaste, ils expriment des molécules de surface similaires aux TRCs ex vivo et produisent de la matrice extracellulaire. Mais l'expression de Ccl19, Ccl21 et 11-7 est perdue et ne peut pas être rétablie par stimulation avec différentes cytokines. Les clones TRC ou les lignées cultivées en un système tridimensionnel de culture cellulaire, montrent une morphologie changée, qui ressemble à celle de TRC ex vivo inclus la construction de réseaux tridimensionnels.Pour caractériser le rôle des TRC dans l'activation des cellules T, nous avons cultivé des TRCs avec des cellules T spécifiques et des DCs chargées avec l'antigène. Etonnamment, la présence des TRC (lignées et ex vivo) inhibait plutôt qu'elle améliorait l'activation, la prolifération et la différenciation des lymphocytes T CDS+. Les TRCs partageaient cette fonction avec des fibr-oblastes des organes non lymphoïdes et des cellules souches du type mésenchymateux. Dans ces conditions, les TRCs sont une source importante d'oxyde nitrique (NO) et par ce fait limitent directement l'expansion des cellules T et réduisent aussi la capacité des DCs à activer les cellules T. L'expression de l'enzyme NO synthase inductible (ïNOS) est régulée à la hausse par des signaux dérivés des DCs et par l'interféron-γ produit par des cellules T de type CD8+ activées. Plus important, l'expression d'iNOS est induite pendant une infection virale in vivo, dans les TRCs et dans les DCs. Par conséquent, la réponse primaire de cellules T est exagérée dans des souris iNOS-/-. Nos résultats mettent en évidence qu'en plus de leur rôle positif bien établi dans la réponse immunitaire, les TRCs et les DCs coopèrent dans une boucle de rétroaction négative pour atténuer l'expansion des cellules T pendant l'inflammation aigiie pour protéger l'intégrité et la fonctionnalité des organes lymphoïdes secondaires.
Resumo:
Cumulative T-cell receptor signal strength and ensuing T-cell responses are affected by both antigen affinity and antigen dose. Here we examined the distinct contributions of these parameters to CD4 T-cell differentiation during infection. We found that high antigen affinity positively correlates with T helper (Th)1 differentiation at both high and low doses of antigen. In contrast, follicular helper T cell (TFH) effectors are generated after priming with high, intermediate, and low affinity ligand. Unexpectedly, memory T cells generated after priming with very low affinity antigen remain impaired in their ability to generate secondary Th1 effectors, despite being recalled with high affinity antigen. These data challenge the view that only strongly stimulated CD4 T cells are capable of differentiating into the TFH and memory T-cell compartments and reveal that differential strength of stimulation during primary T-cell activation imprints unique and long lasting T-cell differentiation programs.
Resumo:
Les cellules dendritiques sont des cellules du système immunitaire qui permettent d'instruire les lymphocytes T, autres cellules de ce système, pour mettre en place une réponse immunitaire adaptée afin de combattre et vaincre une infection. Ces cellules dendritiques vont reconnaître des motifs spécifiquement exprimés par des pathogènes par l'intermédiaire de récepteurs exprimés à leur surface. En détectant ces molécules, elles vont s'activer et subir diverses modifications pour pouvoir activer les lymphocytes T. Elles vont alors interagir avec les lymphocytes Τ et transférer les informations nécessaires pour que ces cellules s'activent à leur tour et produisent différentes protéines de façon à éliminer le pathogène. En fonction du type de pathogène, les informations transférées entre les cellules dendritiques et les lymphocytes seront différentes de manière à produire la réponse immunitaire la mieux adaptée pour supprimer l'élément infectieux. Dans le corps, les cellules dendritiques circulent continuellement afin de détecter les éléments étrangers. Quand elles reconnaissent une protéine étrangère, elles la phagocytent, c'est-à-dire qu'elles la mangent afin de pouvoir la présenter aux lymphocytes T. Mais quand elles phagocytent un élément étranger, elles peuvent également prendre des éléments du soi, comme par exemple quand elles phagocytent une cellule infectée par un virus. Les cellules dendritiques doivent alors être capables de différentier les molécules du soi et du non-soi de façon à ne pas induire une réponse en présentant un antigène du soi aux lymphocytes T. D'autant plus que lors de leur développement, les lymphocytes Τ qui sont capables de reconnaître le soi sont éliminés mais ce système n'est pas parfait et donc certains lymphocytes Τ auto-reactifs peuvent se trouver dans le corps. Il existe ainsi d'autres mécanismes en périphérie du site de développement pour inhiber ces lymphocytes Τ auto-reactifs. Ce sont les mécanismes de tolérance. Quand les lymphocytes Τ induisent une réponse aux antigènes du soi, cela résulte à des maladies auto-immunes. Dans mon projet de recherche, nous avons travaillé avec des lignées de cellules dendritiques, c'est-à-dire des cellules dendritiques semblables à celles que l'on peut trouver in vivo mais qui sont immortalisées, elles peuvent donc être cultiver et manipuler in vitro. Nous avons génétiquement modifiées ces lignées cellulaires pour qu'elles expriment des molécules immunosuppressives afin d'étudier comment induire une tolérance immunitaire, c'est-à-dire si l'expression de ces molécules permet d'éviter de générer une réponse immunitaire. Pour cela, nous avons utilisé des modèles murins de tumeurs et de maladies auto-immunes. Nous avons démontré que ces lignées de cellules dendritiques peuvent être un grand outil de recherche pour étudier les bénéfices de différentes molécules immuno-modulatrices afin d'induire une tolérance immunitaire à différents antigènes. - Les cellules dendritiques sont responsables de l'induction des réponses immunitaires adaptatives. Suite à une infection microbienne, les cellules dendritiques s'activent, elles induisent l'expression de molécules de costimulation à leur surface, sécrètent des cytokines et induisent la différentiation des cellules Τ effectrices et mémoires. De plus, les cellules dendritiques ont un rôle important dans l'induction et la maintenance de la tolérance immunitaire au niveau du thymus et en périphérie, en induisant l'anergie, la délétion ou la conversion des cellules Τ naïves en cellules régulatrices. Dans notre groupe, une nouvelle lignée de cellules dendritiques appelée MuTu a été crée par la culture de cellules dendritiques tumorales isolées à partir d'une rate d'une souris transgénique, dans laquelle l'expression de l'oncogène SV40 et du GFP sont sous le contrôle du promoteur CD1 le, et sont ainsi spécifiquement exprimés dans les cellules dendritiques. Ces nouvelles lignées appartiennent au sous-type des cellules dendritiques conventionnelles exprimant CD8a. Elles ont conservé leur capacité d'augmenter l'expression des marqueurs de costimulation à leur surface ainsi que le production de cytokines en réponse à des ligands des récepteurs Toll, ainsi que leur capacité à présenter des antigènes associés aux molécules du complexe majeur d'histocompatibilité (CMH) de classe I ou II pour activer la prolifération et la différentiation des lymphocytes T. En utilisant un système de transduction de lentivirus de seconde génération, ces nouvelles lignées de cellules dendritiques ont été génétiquement modifiées pour sur-exprimer des molécules immunosuppressives (IL-10, TGFP latent, TGFp actif, Activin A, Arginase 1, IDO, B7DC et CTLA4). Ces lignées permettent d'étudier de manière reproductible le rôle de ces molécules potentiellement tolérogènes sur les réponses immunitaires in vitro et in vivo. Ces lignées potentiellement tolérogènes ont été testées, tout d'abord, in vitro, pour leur capacité à inhiber l'activation des cellules dendritiques, à bloquer la prolifération des cellules Τ ou à modifier leur polarisation. Nos résultats démontrent qu'en réponse à une stimulation, la sur-expression des molécules costimulatrices et la sécrétion de molécules pro- inflammatoires est réduite quand les cellules dendritiques sur-expriment l'IL-10. La sur¬expression de TGFp sous sa forme active induit le développement de cellules régulatrices CD4+ CD25+ Foxp3+ et bloque la réponse CD8 cytotoxique tandis que la sur-expression de CTLA4 à la surface des cellules dendritiques inhibe une réponse Thl et induit des lymphocytes Τ anergiques. Ces lignées ont également été utilisées pour étudier l'induction de tolérance in vivo. Tout d'abord, nous avons étudié l'induction de tolérance dans un modèle de développement de tumeurs. En effet, quand les lignées tumorales sont transférées dans les lignées de souris C57BL/6, elles sont reconnues comme du non-soi du à l'expression de l'oncogène SV40 et du GFP et sont éliminées. Ce mécanisme d'élimination a été étudié en utilisant une lignée de cellules dendritiques modifiée pour exprimer la luciférase et qui a permis de suivre le développement des tumeurs par de l'imagerie in vivo dans des animaux vivants. Ces lignées de cellules dendritiques MuTu sont éliminées dans la souris C57BL/6 par les lymphocytes CD8 et l'action cytotoxique de la perforine. Après plusieurs injections, les cellules dendritiques sur-exprimant CTLA4 ou l'actif TGFp peuvent casser cette réponse immunitaire inhérente aux antigènes de la lignée et induire le développement de la tumeur dans la souris C57BL/6. Le développement tumoral a pu être suivi en mesurant la bioluminescence émise par des cellules dendritiques modifiées pour exprimer à la fois l'actif TGFp et la luciférase. Ces tumeurs ont pu se développer grâce à la mise en place d'un microenvironnement suppressif pour échapper à l'immunité en recrutant des cellules myéloïde suppressives, des lymphocytes CD4 régulateurs et en induisant l'expression d'une molécule inhibitrice PD-1 à la surface des lymphocytes CD8 infiltrant la tumeur. Dans un deuxième temps, ces lignées tolérogènes ont également été testées dans un modèle murin de maladies auto-immunes, appelé l'encéphalomyélite auto-immune expérimental (EAE), qui est un modèle pour la sclérose en plaques. L'EAE a été induite dans la souris par le transfert de cellules de ganglions prélevées d'une souris donneuse préalablement immunisée avec une protéine du système nerveux central, la glycoprotéine myéline oligodendrocyte (MOG) émulsifiée dans de l'adjuvant complet de Freund. La vaccination des souris donneuses et receveuses avec les cellules sur-exprimant l'actif TGFP préalablement chargées avec la protéine MOG bloque l'induction de l'EAE. Nous sommes actuellement en train de définir les mécanismes qui permettent de protéger la souris du développement de la maladie auto-immune. Dans cette étude, nous avons ainsi démontré la possibilité d'induire la tolérance in vivo et in vitro à différents antigènes en utilisant nos nouvelles lignées de cellules dendritiques et en les modifiant pour exprimer des molécules immunosuppressives. En conséquence, ces nouvelles lignées de cellules dendritiques représentent un outil pour explorer les bénéfices de différentes molécules ayant des propriétés immuno-modulatrices pour manipuler le système immunitaire vers un phénotype tolérogène. - Dendritic cells (DC) are widely recognized as potent inducers of the adaptive immune responses. Importantly, after microbial infections, DC become activated, induce co- stimulation, secrete cytokines and induce effector and memory Τ cells. DC furthermore play an important role in inducing and maintaining central and peripheral tolerance by inducing anergy, deletion or commitment of antigen-specific naïve Τ cells into regulatory Τ cells. In our group, stable MuTu DC lines were generated by culture of splenic DC tumors from transgenic mice expressing the SV40 large Τ oncogene and the GFP under DC-specific CDllc promoter. These transformed DC belong to the CD8a+ conventional DC subtype and have fully conserved their capacity to upregulate co-stimulatory markers and produce cytokines after activation with Toll Like Receptors-ligands, and to present Major Histocompatibility class-I or MHCII-restricted antigens to activate Τ cell expansion and differentiation. Using a second- generation lentiviral transduction system, these newly developed MuTu DC lines were genetically modified to overexpress immunosuppressive molecules (IL-10, latent TGFp, active TGFp, Activin A, Arginase 1, IDO, B7DC and CTLA4). This allows to reproducibly investigate the role of these potentially tolerogenic molecules on in vitro and in vivo immune responses. These potentially tolerogenic DC were tested in vitro for their ability to inhibit DC activation, to prevent Τ cell proliferation and to modify Τ cell polarization. Our results show that the upregulation of costimulatory molecules and the secretion of pro-inflammatory cytokines were reduced upon stimulation of DC overexpressing IL-10. The overexpression of active TGFP induced the development of CD4+ CD25+ Foxp3+ regulatory Τ cells and inhibited the cytotoxic CD8 Τ cell response as shown by using the OT-II Τ cell system whereas the surface expression of CTLA-4 on DC prevented the Thl response and prompted an anergic antigen-specific Τ cell response. These MuTu DC lines were also used in vivo in order to study the induction of tolerance. First we addressed the induction of tolerance in a model of tumorogenesis. The adoptively transferred tumor cell lines were cleared in C57BL/6 mice due to the foreign expression of SV40 LargeT and GFP. The mechanism of clearance of MuTu DC line into C57BL/6 mice was investigated by using luciferase-expressing DC line. These DC line allowed to follow, by in vivo imaging, the tumor development in living animals and determined that MuTu DC lines were eliminated in a perforin-mediated CD8 Τ cell dependent and CD4 Τ cell independent response. After multiple injections, DC overexpressing CTLA4 or active TGFp could break the immune response to these inherent antigens and induced DC tumorogenesis in wild type mice. The tumor outgrowth in C57BL/6 mice was nicely observed by double-transduced DC lines to express both luciferase and active TGFp. actTGFp-DC tumor was shown to recruit myeloid-derived suppressor cells, induce CD4+ CD25+ Foxp3+ regulatory Τ cells and induce the expression of the inhibitory receptor PD-1 on tumor- infiltrating CD8+ Τ cells in order to escape tumor immunity. Tolerogenic DC lines were also tested for the induction of tolerance in a murine model of autoimmune disease, the experimental autoimmune encephalitis (EAE) model for human multiple sclerosis. EAE was induced in C57BL/6 mice by the adoptive transfer of lymph node cells isolated from donor mice previously immunized by a protein specific to the central nervous system, the myelin oligodendrocyte glycoprotein (MOG) emulsified in the complete freund adjuvant. The vaccination of donor and recipient mice with MOG-pulsed actTGFP-DC line prevented EAE induction. We are still investigating how the active TGFP protect mice from EAE development. We generated tolerogenic DC lines inducing tolerance in vitro and in vivo. Thereby these MuTu DC lines represent a great tool to explore the benefits of various immuno-modulatory molecules to manipulate the immune system toward a tolerogenic phenotype.
Resumo:
Despite the well-established antitumor activity of CD1d-restricted invariant natural killer T lymphocytes (iNKT), their use for cancer therapy has remained challenging. This appears to be due to their strong but short-lived activation followed by long-term anergy after a single administration of the CD1d agonist ligand alpha-galactosylceramide (αGC). As a promising alternative, we obtained sustained mouse iNKT cell responses associated with prolonged antitumor effects through repeated administrations of tumor-targeted recombinant sCD1d-antitumor scFv fusion proteins loaded with αGC. Here, we demonstrate that CD1d fusion proteins bound to tumor cells via the antibody fragment specific for a tumor-associated antigen, efficiently activate human iNKT cell lines leading to potent tumor cell lysis. The importance of CD1d tumor targeting was confirmed in tumor-bearing mice in which only the specific tumor-targeted CD1d fusion protein resulted in tumor inhibition of well-established aggressive tumor grafts. The therapeutic efficacy correlated with the repeated activation of iNKT and natural killer cells marked by their release of TH1 cytokines, despite the up-regulation of the co-inhibitory receptor PD-1. Our results demonstrate the superiority of providing the superagonist αGC loaded on recombinant CD1d proteins and support the use of αGC/sCD1d-antitumor fusion proteins to secure a sustained human and mouse iNKT cell activation, while targeting their cytotoxic activity and cytokine release to the tumor site.
Resumo:
Diabetes is a recognized risk factor for cardiovascular diseases and heart failure. Diabetic cardiovascular dysfunction also underscores the development of diabetic retinopathy, nephropathy and neuropathy. Despite the broad availability of antidiabetic therapy, glycemic control still remains a major challenge in the management of diabetic patients. Hyperglycemia triggers formation of advanced glycosylation end products (AGEs), activates protein kinase C, enhances polyol pathway, glucose autoxidation, which coupled with elevated levels of free fatty acids, and leptin have been implicated in increased generation of superoxide anion by mitochondria, NADPH oxidases and xanthine oxidoreductase in diabetic vasculature and myocardium. Superoxide anion interacts with nitric oxide forming the potent toxin peroxynitrite via diffusion limited reaction, which in concert with other oxidants triggers activation of stress kinases, endoplasmic reticulum stress, mitochondrial and poly(ADP-ribose) polymerase 1-dependent cell death, dysregulates autophagy/mitophagy, inactivates key proteins involved in myocardial calcium handling/contractility and antioxidant defense, activates matrix metalloproteinases and redox-dependent pro-inflammatory transcription factors (e.g. nuclear factor kappaB) promoting inflammation, AGEs formation, eventually culminating in myocardial dysfunction, remodeling and heart failure. Understanding the complex interplay of oxidative/nitrosative stress with pro-inflammatory, metabolic and cell death pathways is critical to devise novel targeted therapies for diabetic cardiomyopathy, which will be overviewed in this brief synopsis. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.
Resumo:
Chronic viral infections and malignant tumours induce T cells that have a reduced ability to secrete effector cytokines and have upregulated expression of the inhibitory receptor PD1 (programmed cell death protein 1). These features have so far been considered to mark terminally differentiated 'exhausted' T cells. However, several recent clinical and experimental observations indicate that phenotypically exhausted T cells can still mediate a crucial level of pathogen or tumour control. In this Opinion article, we propose that the exhausted phenotype results from a differentiation process in which T cells stably adjust their effector capacity to the needs of chronic infection. We argue that this phenotype is optimized to cause minimal tissue damage while still mediating a critical level of pathogen control. In contrast to the presently held view of functional exhaustion, this new concept better reflects the pathophysiology and clinical manifestations of persisting infections, and it provides a rationale for emerging therapies that enhance T cell activity in chronic infection and cancer by blocking inhibitory receptors.
Resumo:
Obesity is associated with a chronic low-grade inflammation, and specific antiinflammatory interventions may be beneficial for the treatment of type 2 diabetes and other obesity-related diseases. The lipid kinase PI3Kγ is a central proinflammatory signal transducer that plays a major role in leukocyte chemotaxis, mast cell degranulation, and endothelial cell activation. It was also reported that PI3Kγ activity within hematopoietic cells plays an important role in obesity-induced inflammation and insulin resistance. Here, we show that protection from insulin resistance, metabolic inflammation, and fatty liver in mice lacking functional PI3Kγ is largely consequent to their leaner phenotype. We also show that this phenotype is largely based on decreased fat gain, despite normal caloric intake, consequent to increased energy expenditure. Furthermore, our data show that PI3Kγ action on diet-induced obesity depends on PI3Kγ activity within a nonhematopoietic compartment, where it promotes energetic efficiency for fat mass gain. We also show that metabolic modulation by PI3Kγ depends on its lipid kinase activity and might involve kinase-independent signaling. Thus, PI3Kγ is an unexpected but promising drug target for the treatment of obesity and its complications.