154 resultados para cortical thickness


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Subjects with autism often show language difficulties, but it is unclear how they relate to neurophysiological anomalies of cortical speech processing. We used combined EEG and fMRI in 13 subjects with autism and 13 control participants and show that in autism, gamma and theta cortical activity do not engage synergistically in response to speech. Theta activity in left auditory cortex fails to track speech modulations, and to down-regulate gamma oscillations in the group with autism. This deficit predicts the severity of both verbal impairment and autism symptoms in the affected sample. Finally, we found that oscillation-based connectivity between auditory and other language cortices is altered in autism. These results suggest that the verbal disorder in autism could be associated with an altered balance of slow and fast auditory oscillations, and that this anomaly could compromise the mapping between sensory input and higher-level cognitive representations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seizures can be an early symptom of Alzheimer's disease (AD) and can precede cognitive decline. Early epilepsy in AD can mimic transient epileptic amnesic syndrome (TEAS) or epileptic amnesic syndrome. We report the case of a patient who started a cerebrospinal fluid (CSF)-proven AD with partial seizures and TEAS that secondarily became a cortical posterior atrophy syndrome. CSF biomarkers showed a high amyloid production, amyloidopathy, and high level of total tau and p-Tau. This observation adds data to the complex AD-early epilepsy interactions and illustrates that atypical AD can cause a TEAS. Possible red flags for an underlying neurodegenerative process in TEAS are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Huntington's disease is an incurable neurodegenerative disease caused by inheritance of an expanded cytosine-adenine-guanine (CAG) trinucleotide repeat within the Huntingtin gene. Extensive volume loss and altered diffusion metrics in the basal ganglia, cortex and white matter are seen when patients with Huntington's disease (HD) undergo structural imaging, suggesting that changes in basal ganglia-cortical structural connectivity occur. The aims of this study were to characterise altered patterns of basal ganglia-cortical structural connectivity with high anatomical precision in premanifest and early manifest HD, and to identify associations between structural connectivity and genetic or clinical markers of HD. 3-Tesla diffusion tensor magnetic resonance images were acquired from 14 early manifest HD subjects, 17 premanifest HD subjects and 18 controls. Voxel-based analyses of probabilistic tractography were used to quantify basal ganglia-cortical structural connections. Canonical variate analysis was used to demonstrate disease-associated patterns of altered connectivity and to test for associations between connectivity and genetic and clinical markers of HD; this is the first study in which such analyses have been used. Widespread changes were seen in basal ganglia-cortical structural connectivity in early manifest HD subjects; this has relevance for development of therapies targeting the striatum. Premanifest HD subjects had a pattern of connectivity more similar to that of controls, suggesting progressive change in connections over time. Associations between structural connectivity patterns and motor and cognitive markers of disease severity were present in early manifest subjects. Our data suggest the clinical phenotype in manifest HD may be at least partly a result of altered connectivity. Hum Brain Mapp 36:1728-1740, 2015. © 2015 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To characterize perifoveal intraretinal cavities observed around full-thickness macular holes (MH) using en face optical coherence tomography and to establish correlations with histology of human and primate maculae. DESIGN: Retrospective nonconsecutive observational case series. METHODS: Macular en face scans of 8 patients with MH were analyzed to quantify the areas of hyporeflective spaces, and were compared with macular flat mounts and sections from 1 normal human donor eye and 2 normal primate eyes (Macaca fascicularis). Immunohistochemistry was used to study the distribution of glutamine synthetase, expressed by Müller cells, and zonula occludens-1, a tight-junction protein. RESULTS: The mean area of hyporeflective spaces was lower in the inner nuclear layer (INL) than in the complex formed by the outer plexiform (OPL) and the Henle fiber layers (HFL): 5.0 × 10(-3) mm(2) vs 15.9 × 10(-3) mm(2), respectively (P < .0001, Kruskal-Wallis test). In the OPL and HFL, cavities were elongated with a stellate pattern, whereas in the INL they were rounded and formed vertical cylinders. Immunohistochemistry confirmed that Müller cells followed a radial distribution around the fovea in the frontal plane and a "Z-shaped" course in the axial plane, running obliquely in the OPL and HFL and vertically in the inner layers. In addition, zonula occludens-1 co-localized with Müller cells within the complex of OPL and HFL, indicating junctions in between Müller cells and cone axons. CONCLUSION: The dual profile of cavities around MHs correlates with Müller cell morphology and is consistent with the hypothesis of intra- or extracellular fluid accumulation along these cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Oxidative stress and the specific impairment of perisomatic gamma-aminobutyric acid circuits are hallmarks of the schizophrenic brain and its animal models. Proper maturation of these fast-spiking inhibitory interneurons normally defines critical periods of experience-dependent cortical plasticity. METHODS: Here, we linked these processes by genetically inducing a redox dysregulation restricted to such parvalbumin-positive cells and examined the impact on critical period plasticity using the visual system as a model (3-6 mice/group). RESULTS: Oxidative stress was accompanied by a significant loss of perineuronal nets, which normally enwrap mature fast-spiking cells to limit adult plasticity. Accordingly, the neocortex remained plastic even beyond the peak of its natural critical period. These effects were not seen when redox dysregulation was targeted in excitatory principal cells. CONCLUSIONS: A cell-specific regulation of redox state thus balances plasticity and stability of cortical networks. Mistimed developmental trajectories of brain plasticity may underlie, in part, the pathophysiology of mental illness. Such prolonged developmental plasticity may, in turn, offer a therapeutic opportunity for cognitive interventions targeting brain plasticity in schizophrenia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human auditory cortex comprises the supratemporal plane and large parts of the temporal and parietal convexities. We have investigated the relevant intrahemispheric cortico-cortical connections using in vivo DSI tractography combined with landmark-based registration, automatic cortical parcellation and whole-brain structural connection matrices in 20 right-handed male subjects. On the supratemporal plane, the pattern of connectivity was related to the architectonically defined early-stage auditory areas. It revealed a three-tier architecture characterized by a cascade of connections from the primary auditory cortex to six adjacent non-primary areas and from there to the superior temporal gyrus. Graph theory-driven analysis confirmed the cascade-like connectivity pattern and demonstrated a strong degree of segregation and hierarchy within early-stage auditory areas. Putative higher-order areas on the temporal and parietal convexities had more widely spread local connectivity and long-range connections with the prefrontal cortex; analysis of optimal community structure revealed five distinct modules in each hemisphere. The pattern of temporo-parieto-frontal connectivity was partially asymmetrical. In conclusion, the human early-stage auditory cortical connectivity, as revealed by in vivo DSI tractography, has strong similarities with that of non-human primates. The modular architecture and hemispheric asymmetry in higher-order regions is compatible with segregated processing streams and lateralization of cognitive functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How a stimulus or a task alters the spontaneous dynamics of the brain remains a fundamental open question in neuroscience. One of the most robust hallmarks of task/stimulus-driven brain dynamics is the decrease of variability with respect to the spontaneous level, an effect seen across multiple experimental conditions and in brain signals observed at different spatiotemporal scales. Recently, it was observed that the trial-to-trial variability and temporal variance of functional magnetic resonance imaging (fMRI) signals decrease in the task-driven activity. Here we examined the dynamics of a large-scale model of the human cortex to provide a mechanistic understanding of these observations. The model allows computing the statistics of synaptic activity in the spontaneous condition and in putative tasks determined by external inputs to a given subset of brain regions. We demonstrated that external inputs decrease the variance, increase the covariances, and decrease the autocovariance of synaptic activity as a consequence of single node and large-scale network dynamics. Altogether, these changes in network statistics imply a reduction of entropy, meaning that the spontaneous synaptic activity outlines a larger multidimensional activity space than does the task-driven activity. We tested this model's prediction on fMRI signals from healthy humans acquired during rest and task conditions and found a significant decrease of entropy in the stimulus-driven activity. Altogether, our study proposes a mechanism for increasing the information capacity of brain networks by enlarging the volume of possible activity configurations at rest and reliably settling into a confined stimulus-driven state to allow better transmission of stimulus-related information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In rodents, sensory experience alters the whisker representation in layer IV of the barrel cortex (Woolsey and Van der Loos, 1970). Excitatory and inhibitory interneurons, together with the astrocytic network, modify the functional representation in an integrated manner. Our group showed that continuous whisker stimulation induces structural and functional changes in the corresponding barrel. These modifications include the depression of neuronal responses and an insertion of new inhibitory synapses on dendritic spines (Knott et al., 2002; Genoud et al., 2006; Quairiaux et al., 2007). This form of cortical plasticity is controlled by several gene regulatory mechanisms including the activation of genetic programs controlling the expression of microRNAs (miRNAs). The transitory and localized expression of miRNAs in dendrites and their capacity to respond in an activity-dependent manner make them ideal candidates for the fine tuning of gene expression associated with neural plasticity. In a previous study of our group (Johnston- Wenger, 2010) using microarray analysis on laser-dissected barrels in order to compare the gene expression levels in stimulated and non-stimulated barrels after whisker stimulation, 261 genes were found significantly regulated, among these genes there were two miRNAs (miR- 132 and miR-137). In this study I tested the initial observation on the up-regulation of miR-132 and miR-137 after whisker stimulation and the possible involvement of two other miRNAs (miR-138 and miR-125b) that are known play a role in other form of synaptic plasticity. I used in situ hybridization (ISH) after unilateral stimulation of three whiskers (Cl-3) in the adult mouse. We found that sensory stimulation increases the expression, of miR-132 after 3hours of stimulation (p<0.01) and miR-137 (pO.Ol; 24 hrs of stim.), whereas it reduces the level of miR-125b (pO.Ol; 9 hrs of stim.). No significant difference was detected for miR-138. We further determined a correlation between the level of expression of the four selected miRNAs in the cortical barrels (measured by ISH) and in blood plasma (measured by qPCR). In addition to this quantitative comparison, we combined miRNAs ISH and immunolabeling for various neuronal markers that were chosen for the localization in both excitatory and inhibitory circuits as well as in astrocytes. Analysis of three-dimensional confocal acquisitions showed that stimulation alters significantly the degree of co-localization in the stimulated barrel of miR-132 with GAD65/67 and VGLUT2; miR-125b with GAD65/67 and parvalbumin; miR-138 with parvalbumin, VGLUT1 and PSD95; and miR-137 with VGLUT1 and astrocytic markers (GS; GFAP and SlOOß). To conclude, using increased neuronal activity in the whisker-to-barrel pathway; our results suggest that miRNAs can be regulated in an activity-dependent manner and they may regulate local mRNA translation to shape neuronal responses. These findings motivate further investigation of the different modes in which miRNAs may regulate cortical plasticity. -- Chez les rongeurs, l'expérience sensorielle modifie la représentation des vibrisses au niveau du cortex somatosensoriel primaire (Woolsey and Van der Loos, 1970). Les interneurones excitateurs et inhibiteurs, en collaboration avec le réseau astrocytaire, modifient la représentation fonctionnelle d'une manière intégrée. Notre groupe a montré que la stimulation continue des vibrisses induit des changements structuraux et fonctionnels dans le tonneau correspondant. Ces modifications incluent la dépression des réponses neuronales et une insertion de nouvelles synapses inhibitrices sur les épines dendritiques (Knott et al., 2002 ; Genoud et al., 2006 ; Quairiaux et al., 2007). Cette forme de plasticité corticale est contrôlée par plusieurs mécanismes de régulation génique dont l'activation des programmes géniques contrôlant l'expression des microARNs (miARNs). Par leur expression transitoire et localisée dans les dendrites et leur capacité à réagir d'une manière dépendante de l'activité, les miARNs sont des candidats idéaux pour le réglage fin de l'expression des gènes associée à la plasticité neuronale. Afin de comparer le niveau d'expression des gènes dans les tonneaux stimulés et non-stimulés après stimulation des vibrisses, une étude antérieure dans notre groupe (Johnston-Wenger, 2010), utilisant l'analyse par microarray sur des tonneaux disséqués par laser, a montré l'altération significative de 261 gènes. Parmi ces gènes, il y avait deux miARNs (miR-132 et miR-137). Dans la présente étude, j'ai testé l'observation initiale sur la régulation de miR-132 et miR-137 après stimulation des vibrisses et la possible implication de deux autres miARNs (miR-138 et miR-125b) connus avoir jouer un rôle important dans d'autres formes de plasticité synaptique. J'ai utilisé l'hybridation in situ (ISH) après stimulation unilatérale de trois vibrisses (Cl-3) chez la souris adulte. J'ai trouvé que la stimulation sensorielle augmente l'expression, de miR-132 après 3 heures de stimulation (p < 0.01) et miR-137 (p < 0.01 ; 24 hrs de stim.), alors qu'elle réduit le niveau de miR-125b (p < 0.01; 9 hrs de stim.). Aucune différence significative n'a été détectée pour miR-138. J'ai aussi déterminé une corrélation entre le niveau d'expression des quatre miARNs sélectionnés dans les tonneaux (mesurés par ISH) et dans le plasma sanguin (mesuré par qPCR). En plus de cette comparaison quantitative, j'ai combiné le miR-ISH et l'immunomarquage pour divers marqueurs neuronaux qui ont été choisis pour étudier la localisation dans les circuits excitateurs et inhibiteurs, ainsi que dans les astrocytes. Les acquisitions tridimensionnelles montrent que la stimulation modifie considérablement le degré de co-localisation dans le tonneau stimulé de miR-132 avec GAD65/67 et VGLUT2; miR-125b avec GAD65/67 et parvalbumine; miR-138 avec parvalbumine, VGLUT1 et PSD95; et miR-137 avec VGLUT1 et les marqueurs astrocytaires (GS ; GFAP et SlOOß). En conclusion, à l'aide de l'activité neuronale accrue dans la voie de vibrisses-au-baril; les résultats suggèrent que les miARNs peuvent être régulé d'une manière dépendante de l'activité et peuvent résulter la stabilité des ARNm et la traduction pour façonner les réponses neuronales ultérieures. Ces résultats incitent d'investiguer davantage les voies importantes par lesquels les miARNs peuvent réguler la plasticité corticale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcium hydroxyapatite crystal deposition is a common disorder, which sometimes causes acute pain as calcifications dissolve and migrate into adjacent soft tissue. Intraosseous calcium penetration has also been described. We illustrate the appearance of these lesions using a series of 35 cases compiled by members of the French Society of Musculoskeletal Imaging (Société d'Imagerie Musculo-Squelettique, SIMS). The first group in our series (7 cases) involved calcification-related cortical erosions of the humeral and femoral diaphyses, in particular at the pectoralis major and gluteus maximus insertions. A second group (28 cases) involved the presence of calcium material in subcortical areas. The most common site was the greater tubercle of the humerus, accompanying a calcifying tendinopathy of the supraspinatus. In addition, an extensive intramedullary diffusion of calcium deposits was observed in four of these cases, associated with cortical erosion in one case and subcortical lesions in three cases. Cortical erosions and intraosseous migration of calcifications associated with calcific tendinitis may be confused with neoplasm or infection. It is important to recognize atypical presentations of hydroxyapatite deposition to avoid unnecessary investigation or surgery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To test if the relationship between knee kinetics during walking and regional patterns of cartilage thickness is influenced by disease severity we tested the following hypotheses in a cross-sectional study of medial compartment osteoarthritis (OA) subjects: (1) the peak knee flexion (KFM) and adduction moments (KAM) during walking are associated with regional cartilage thickness and medial-to-lateral cartilage thickness ratios, and (2) the associations between knee moments and cartilage thickness data are dependent on disease severity. Seventy individuals with medial compartment knee OA were studied. Gait analysis was used to determine the knee moments and cartilage thickness was measured from magnetic resonance imaging. Multiple linear regression analyses tested for associations between cartilage thickness and knee kinetics. Medial cartilage thickness and medial-to-lateral cartilage thickness ratios were lower in subjects with greater KAM for specific regions of the femoral condyle and tibial plateau with no associations for KFM in patients of all disease severities. When separated by severity, the association between KAM and cartilage thickness was found only in patients with more severe OA, and KFM was significantly associated with cartilage thickness only for the less severe OA subjects for specific tibial plateau regions. The results support the idea that the KAM is larger in patients with more severe disease and the KFM has greater influence early in the disease process, which may lessen as pain increases with disease severity. Each component influences different regions of cartilage. Thus the relative contributions of both KAM and KFM should be considered when evaluating gait mechanics and the influence of any intervention for knee OA.