376 resultados para alpha-amylase inhibitor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rat 1 fibroblasts transfected to express either the wild-type hamster alpha 1B-adrenergic receptor or a constitutively active mutant (CAM) form of this receptor resulting from the alteration of amino acid residues 288-294 to encode the equivalent region of the human beta 2-adrenergic receptor were examined. The basal level of inositol phosphate generation in cells expressing the CAM alpha 1B-adrenergic receptor was greater than for the wild-type receptor, The addition of maximally effective concentrations of phenylephrine or noradrenaline resulted in substantially greater levels of inositol phosphate generation by the CAM alpha 1B-adrenergic receptor, although this receptor was expressed at lower steady-state levels than the wild-type receptor. The potency of both phenylephrine and noradrenaline to stimulate inositol phosphate production was approx. 200-fold greater at the CAM alpha 1B-adrenergic receptor than at the wild-type receptor. In contrast, endothelin 1, acting at the endogenously expressed endothelin ETA, receptor, displayed similar potency and maximal effects in the two cell lines. The sustained presence of phenylephrine resulted in down-regulation of the alpha subunits of the phosphoinositidase C-linked, pertussis toxin-insensitive, G-proteins G9 and G11 in cells expressing either the wild-type or the CAM alpha 1B-adrenergic receptor. The degree of down-regulation achieved was substantially greater in cells expressing the CAM alpha 1B-adrenergic receptor at all concentrations of the agonist. However, in this assay phenylephrine displayed only a slightly greater potency at the CAM alpha 1B-adrenergic receptor than at the wild-type receptor. There were no detectable differences in the basal rate of G9 alpha/G11 alpha degradation between cells expressing the wild-type or the CAMalpha 1B-adrenergic receptor. In both cell lines the addition of phenylephrine substantially increased the rate of degradation of these G-proteins, with a greater effect at the CAM alpha 1B-adrenergic receptor. The enhanced capacity of agonist both to stimulate second-messenger production at the CAM alpha 1B-adrenergic receptor and to regulate cellular levels of its associated G-proteins by stimulating their rate of degradation is indicative of an enhanced stoichiometry of coupling of this form of the receptor to G9 and G11.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have characterized the pharmacological antagonism, i.e., neutral antagonism or inverse agonism, displayed by a number of alpha-blockers at two alpha1-adrenergic receptor (AR) subtypes, alpha(1a)- and alpha(1b)-AR. Constitutively activating mutations were introduced into the alpha(1a)-AR at the position homologous to A293 of the alpha(1b)-AR where activating mutations were previously described. Twenty-four alpha-blockers differing in their chemical structures were initially tested for their effect on the agonist-independent inositol phosphate response mediated by the constitutively active A271E and A293E mutants expressed in COS-7 cells. A selected number of drugs also were tested for their effect on the small, but measurable spontaneous activity of the wild-type alpha(1a)- and alpha(1b)-AR expressed in COS-7 cells. The results of our study demonstrate that a large number of structurally different alpha-blockers display profound negative efficacy at both the alpha(1a)- and alpha(1b)-AR subtypes. For other drugs, the negative efficacy varied at the different constitutively active mutants. The most striking difference concerns a group of N-arylpiperazines, including 8-[2-[4-(5-chloro-2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro [4, 5] decane-7,9-dione (REC 15/3039), REC 15/2739, and REC 15/3011, which are inverse agonists with profound negative efficacy at the wild-type alpha(1b)-AR, but not at the alpha(1a)-AR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The efficacy of angiotensin-converting enzyme (ACE) inhibitors in decreasing blood pressure in African patients is controversial. OBJECTIVE: We examined the ambulatory blood pressure (ABP) response to a diuretic and an ACE inhibitor in hypertensive patients of East African descent and evaluated the individual characteristics that determined treatment efficacy. DESIGN: A single-blind randomized AB/BA crossover design. SETTING: Hypertensive families of East African descent from the general population in the Seychelles. PARTICIPANTS: Fifty-two (29 men and 23 women) out of 62 eligible hypertensive patients were included.Main outcome measures ABP response to 20 mg lisinopril (LIS) daily and 25 mg hydrochlorothiazide (HCT) daily given for a 4-week period.Results The daytime systolic/diastolic ABP response to HCT was 4.9 [95% confidence interval (CI) 1.2-8.6]/3.6 (1.0-6.2) mmHg for men and 12.9 (9.2-16.6)/6.3 (3.7-8.8) mmHg for women. With LIS the response was 18.8 (15.0-22.5)/14.6 (12.0-17.1) mmHg for men and 12.4 (8.7-16.2)/7.7 (5.1-10.2) mmHg for women. The night-time systolic/diastolic response to HCT was 5.0 (0.6-9.4)/2.7 [(-0.4)-5.7] mmHg for men and 11.5 (7.1-16.0)/5.7 (2.6-8.8) mmHg for women, and to LIS was 18.7 (14.2-22.1)/15.4 (12.4-18.5) mmHg for men and 3.5 [(-1.0)-7.9]/2.3 [(-0.8)-5.4] mmHg for women. Linear regression analyses showed that gender is an independent predictor of the ABP responses to HCT and to LIS. CONCLUSIONS: Hypertensive patients of African descent responded better to LIS than to HCT. Men responded better to LIS than to HCT and women responded similarly to both drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Na,K-ATPase is a potential target for regulatory phosphorylation by protein kinase A and C (PKA and PKC). To identify the phosphorylation sites, we have mutated the alpha 1-subunit of Bufo marinus in a highly conservative PKA and in 20 different PKC consensus sequences. The mutants were expressed in Xenopus oocytes and their phosphorylation capacity tested in homogenates upon stimulation of PKA or PKC. While serine 943 (Ser-943) was identified as a unique target site for PKA, none of the PKC consensus serine or threonine residues are implicated in PKC phosphorylation. Controlled trypsinolysis of phosphorylated alpha-subunits of various purified enzyme preparations and of alpha/beta complexes from oocyte homogenates revealed that PKC phosphorylation was exclusively associated with the N terminus. A fusion protein containing the first 32 amino acids of the Bufo alpha-subunit was phosphorylated in vitro and serine and threonine residues (Thr-15 and Ser-16) in this region were identified by site-directed mutagenesis as the PKC phosphorylation sites. Finally, the Bufo alpha-subunit was phosphorylated by protein kinases in transfected COS-7 cells. In intact cells, PKA stimulation induced phosphorylation exclusively on Ser-943 and PKC stimulation mainly on Thr-15 and Ser-16, which are contained in a novel PKC phosphorylation motif.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: Acute respiratory distress syndrome is a common and highly lethal inflammatory lung syndrome. We previously have shown that an adenoviral vector expressing the heat shock protein (Hsp)70 (AdHSP) protects against experimental sepsis-induced acute respiratory distress syndrome in part by limiting neutrophil accumulation in the lung. Neutrophil accumulation and activation is modulated, in part, by the nuclear factor-kappaB (NF-kappaB) signal transduction pathway. NF-kappaB activation requires dissociation/degradation of a bound inhibitor, IkappaBalpha. IkappaBalpha degradation requires phosphorylation by IkappaB kinase, ubiquitination by the SCFbeta-TrCP (Skp1/Cullin1/Fbox beta-transducing repeat-containing protein) ubiquitin ligase, and degradation by the 26S proteasome. We tested the hypothesis that Hsp70 attenuates NF-kappaB activation at multiple points in the IkappaBalpha degradative pathway. DESIGN: Laboratory investigation. SETTING: University medical center research laboratory. SUBJECTS: Adolescent (200 g) Sprague-Dawley rats and murine lung epithelial-12 cells in culture. INTERVENTIONS: Lung injury was induced in rats via cecal ligation and double puncture. Thereafter, animals were treated with intratracheal injection of 1) phosphate buffer saline, 2) AdHSP, or 3) an adenovirus expressing green fluorescent protein. Murine lung epithelial-12 cells were stimulated with tumor necrosis factor-alpha and transfected. NF-kappaB was examined using molecular biological tools. MEASUREMENTS AND MAIN RESULTS: Intratracheal administration of AdHSP to rats with cecal ligation and double puncture limited nuclear translocation of NF-kappaB and attenuated phosphorylation of IkappaBalpha. AdHSP treatment reduced, but did not eliminate, phosphorylation of the beta-subunit of IkappaB kinase. In vitro kinase activity assays and gel filtration chromatography revealed that treatment of sepsis-induced lung injury with AdHSP induced fragmentation of the IkappaB kinase signalosome. This stabilized intermediary complexes containing IkappaB kinase components, IkappaBalpha, and NF-kappaB. Cellular studies indicate that although ubiquitination of IkappaBalpha was maintained, proteasomal degradation was impaired by an indirect mechanism. CONCLUSIONS: Treatment of sepsis-induced lung injury with AdHSP limits NF-kappaB activation. This results from stabilization of intermediary NF-kappaB/IkappaBalpha/IkappaB kinase complexes in a way that impairs proteasomal degradation of IkappaBalpha. This novel mechanism by which Hsp70 attenuates an intracellular process may be of therapeutic value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arenaviruses merit interest as clinically important human pathogens and include several causative agents, chiefly Lassa virus (LASV), of hemorrhagic fever disease in humans. There are no licensed LASV vaccines, and current antiarenavirus therapy is limited to the use of ribavirin, which is only partially effective and is associated with significant side effects. The arenavirus glycoprotein (GP) precursor GPC is processed by the cellular site 1 protease (S1P) to generate the peripheral virion attachment protein GP1 and the fusion-active transmembrane protein GP2, which is critical for production of infectious progeny and virus propagation. Therefore, S1P-mediated processing of arenavirus GPC is a promising target for therapeutic intervention. To this end, we have evaluated the antiarenaviral activity of PF-429242, a recently described small-molecule inhibitor of S1P. PF-429242 efficiently prevented the processing of GPC from the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) and LASV, which correlated with the compound's potent antiviral activity against LCMV and LASV in cultured cells. In contrast, a recombinant LCMV expressing a GPC whose processing into GP1 and GP2 was mediated by furin, instead of S1P, was highly resistant to PF-429242 treatment. PF-429242 did not affect virus RNA replication or budding but had a modest effect on virus cell entry, indicating that the antiarenaviral activity of PF-429242 was mostly related to its ability to inhibit S1P-mediated processing of arenavirus GPC. Our findings support the feasibility of using small-molecule inhibitors of S1P-mediated processing of arenavirus GPC as a novel antiviral strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intimal sarcoma (IS) is a rare, malignant, and aggressive tumor that shows a relentless course with a concomitant low survival rate and for which no effective treatment is available. In this study, 21 cases of large arterial blood vessel IS were analyzed by immunohistochemistry and fluorescence in situ hybridization and selectively by karyotyping, array comparative genomic hybridization, sequencing, phospho-kinase antibody arrays, and Western immunoblotting in search for novel diagnostic markers and potential molecular therapeutic targets. Ex vivo immunoassays were applied to test the sensitivity of IS primary tumor cells to the receptor tyrosine kinase (RTK) inhibitors imatinib and dasatinib. We showed that amplification of platelet-derived growth factor receptor α (PDGFRA) is a common finding in IS, which should be considered as a molecular hallmark of this entity. This amplification is consistently associated with PDGFRA activation. Furthermore, the tumors reveal persistent activation of the epidermal growth factor receptor (EGFR), concurrent to PDGFRA activation. Activated PDGFRA and EGFR frequently coexist with amplification and overexpression of the MDM2 oncogene. Ex vivo immunoassays on primary IS cells from one case showed the potency of dasatinib to inhibit PDGFRA and downstream signaling pathways. Our findings provide a rationale for investigating therapies that target PDGFRA, EGFR, or MDM2 in IS. Given the clonal heterogeneity of this tumor type and the potential cross-talk between the PDGFRA and EGFR signaling pathways, targeting multiple RTKs and aberrant downstream effectors might be required to improve the therapeutic outcome for patients with this disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hepatitis C virus (HCV) infection induces a state of oxidative stress by affecting mitochondrial-respiratory-chain activity. By using cell lines inducibly expressing different HCV constructs, we showed previously that viral-protein expression leads to severe impairment of mitochondrial oxidative phosphorylation and to major reliance on nonoxidative glucose metabolism. However, the bioenergetic competence of the induced cells was not compromised, indicating an efficient prosurvival adaptive response. Here, we show that HCV protein expression activates hypoxia-inducible factor 1 (HIF-1) by normoxic stabilization of its alpha subunit. In consequence, expression of HIF-controlled genes, including those coding for glycolytic enzymes, was significantly upregulated. Similar expression of HIF-controlled genes was observed in cell lines inducibly expressing subgenomic HCV constructs encoding either structural or nonstructural viral proteins. Stabilization and transcriptional activation of HIF-1alpha was confirmed in Huh-7.5 cells harboring cell culture-derived infectious HCV and in liver biopsy specimens from patients with chronic hepatitis C. The HCV-related HIF-1alpha stabilization was insensitive to antioxidant treatment. Mimicking an impairment of mitochondrial oxidative phosphorylation by treatment of inducible cell lines with oligomycin resulted in stabilization of HIF-1alpha. Similar results were obtained by treatment with pyruvate, indicating that accumulation of intermediate metabolites is sufficient to stabilize HIF-1alpha. These observations provide new insights into the pathogenesis of chronic hepatitis C and, possibly, the HCV-related development of hepatocellular carcinoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activation of the peroxisome proliferator-activated receptor (PPAR)-alpha increases lipid catabolism and lowers the concentration of circulating lipid, but its role in the control of glucose metabolism is not as clearly established. Here we compared PPARalpha knockout mice with wild type and confirmed that the former developed hypoglycemia during fasting. This was associated with only a slight increase in insulin sensitivity but a dramatic increase in whole-body and adipose tissue glucose use rates in the fasting state. The white sc and visceral fat depots were larger due to an increase in the size and number of adipocytes, and their level of GLUT4 expression was higher and no longer regulated by the fed-to-fast transition. To evaluate whether these adipocyte deregulations were secondary to the absence of PPARalpha from liver, we reexpresssed this transcription factor in the liver of knockout mice using recombinant adenoviruses. Whereas more than 90% of the hepatocytes were infected and PPARalpha expression was restored to normal levels, the whole-body glucose use rate remained elevated. Next, to evaluate whether brain PPARalpha could affect glucose homeostasis, we activated brain PPARalpha in wild-type mice by infusing WY14643 into the lateral ventricle and showed that whole-body glucose use was reduced. Hence, our data show that PPARalpha is involved in the regulation of glucose homeostasis, insulin sensitivity, fat accumulation, and adipose tissue glucose use by a mechanism that does not require PPARalpha expression in the liver. By contrast, activation of PPARalpha in the brain stimulates peripheral glucose use. This suggests that the alteration in adipocyte glucose metabolism in the knockout mice may result from the absence of PPARalpha in the brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family with potent apoptosis-inducing properties in tumor cells. In particular, TRAIL strongly synergizes with conventional chemotherapeutic drugs to induce tumor cell death. Thus, TRAIL has been proposed as a promising future cancer therapy. Little, however, is known regarding what the role of TRAIL is in normal untransformed cells and whether therapeutic administration of TRAIL, alone or in combination with other apoptotic triggers, may cause tissue damage. In this study, we investigated the role of TRAIL in Fas-induced (CD95/Apo-1-induced) hepatocyte apoptosis and liver damage. While TRAIL alone failed to induce apoptosis in isolated murine hepatocytes, it strongly amplified Fas-induced cell death. Importantly, endogenous TRAIL was found to critically regulate anti-Fas antibody-induced hepatocyte apoptosis, liver damage, and associated lethality in vivo. TRAIL enhanced anti-Fas-induced hepatocyte apoptosis through the activation of JNK and its downstream substrate, the proapoptotic Bcl-2 homolog Bim. Consistently, TRAIL- and Bim-deficient mice and wild-type mice treated with a JNK inhibitor were protected against anti-Fas-induced liver damage. We conclude that TRAIL and Bim are important response modifiers of hepatocyte apoptosis and identify liver damage and lethality as a possible risk of TRAIL-based tumor therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Plasmodium falciparum were identified in the P. vivax genome. The peptides identified in silico were chemically synthesized; circular dichroism studies indicated partial or high α-helical content. Antigenicity was evaluated using human sera samples from malaria-endemic areas of Colombia and Papua New Guinea. Eight of these fragments were selected and used to assess immunogenicity in BALB/c mice. ELISA assays indicated strong reactivity of serum samples from individuals residing in malaria-endemic regions and sera of immunized mice, with the α-helical coiled coil structures. In addition, ex vivo production of IFN-γ by murine mononuclear cells confirmed the immunogenicity of these structures and the presence of T-cell epitopes in the peptide sequences. Moreover, sera of mice immunized with four of the eight antigens recognized native proteins on blood-stage P. vivax parasites, and antigenic cross-reactivity with three of the peptides was observed when reacted with both the P. falciparum orthologous fragments and whole parasites. Results here point to the α-helical coiled coil peptides as possible P. vivax malaria vaccine candidates as were observed for P. falciparum. Fragments selected here warrant further study in humans and non-human primate models to assess their protective efficacy as single components or assembled as hybrid linear epitopes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alpha-ketoglutarate-dependent (R)-dichlorprop dioxygenase (RdpA) and alpha-ketoglutarate-dependent (S)-dichlorprop dioxygenase (SdpA), which are involved in the degradation of phenoxyalkanoic acid herbicides in Sphingomonas herbicidovorans MH, were expressed and purified as His6-tagged fusion proteins from Escherichia coli BL21(DE3)(pLysS). RdpA and SdpA belong to subgroup II of the alpha-ketoglutarate-dependent dioxygenases and share the specific motif HXDX(24)TX(131)HX(10)R. Amino acids His-111, Asp-113, and His-270 and amino acids His-102, Asp-104, and His 257 comprise the 2-His-1-carboxylate facial triads and were predicted to be involved in iron binding in RdpA and SdpA, respectively. RdpA exclusively transformed the (R) enantiomers of mecoprop [2-(4-chloro-2-methylphenoxy)propanoic acid] and dichlorprop [2-(2,4-dichlorophenoxy)propanoic acid], whereas SdpA was specific for the (S) enantiomers. The apparent Km values were 99 microM for (R)-mecoprop, 164 microM for (R)-dichlorprop, and 3 microM for alpha-ketoglutarate for RdpA and 132 microM for (S)-mecoprop, 495 microM for (S)-dichlorprop, and 20 microM for alpha-ketoglutarate for SdpA. Both enzymes had high apparent Km values for oxygen; these values were 159 microM for SdpA and >230 microM for RdpA, whose activity was linearly dependent on oxygen at the concentration range measured. Both enzymes had narrow cosubstrate specificity; only 2-oxoadipate was able to replace alpha-ketoglutarate, and the rates were substantially diminished. Ferrous iron was necessary for activity of the enzymes, and other divalent cations could not replace it. Although the results of growth experiments suggest that strain MH harbors a specific 2,4-dichlorophenoxyacetic acid-converting enzyme, tfdA-, tfdAalpha-, or cadAB-like genes were not discovered in a screening analysis in which heterologous hybridization and PCR were used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Stroke or cerebrovascular accident, whose great majority is of ischemic nature, is the third leading cause of mortality and long lasting disability in industrialised countries. Resulting from the loss of blood supply to the brain depriving cerebral tissues of oxygen and glucose, it induces irreversible neuronal damages. Despite the large amount of research carried out into the causes and pathogenic features of cerebral ischemia the progress toward effective treatments has been poor. Apart the clot-busting drug tissue-type plasminogen activator (tPA) as effective therapy for acute stroke (reperfusion by thrombolysis) but limited to a low percentage of patients, there are currently no other approved medical treatments. The need for new therapy strategies is therefore imperative. Neuronal death in cerebral ischemia is among others due to excitotoxic mechanisms very early after stroke onset. One of the main involved molecular pathways leading to excitotoxic cell death is the c-Jun NH2-terminal kinase (JNK) pathway. Several studies have already shown the efficacy of a neuroprotective agent of a new type, a dextrogyre peptide synthesized in the retro inverso form (XG102, formerly D-JNKI1), which is protease-resistant and cell-penetrating and that selectively and strongly blocks the access of JNK to many of its targets. A powerful protection was observed with this compound in several models of ischemia (Borsello et al. 2003;Hirt et al. 2004). This chimeric compound, made up of a 10 amino acid TAT transporter sequence followed by a 20 amino acids JNK binding domain (JBD) sequence from JNK inhibitor protein (JIP) molecule, induced both a major reduction in lesion size and improved functional outcome. Moreover it presents a wide therapeutic window. XG-102 has proved its powerful efficacy in an occlusion model of middle cerebral artery in mice with intracérebroventricular (i.c.v.) injection but in order to be able to consider the development of this drug for human ischemic stroke it was therefore necessary to determine the feasibility of its systemic administration. The studies being the subject of this thesis made it possible to show a successful neuroprotection with XG-102 administered systemically after transient mouse middle cerebral artery occlusion (MCAo). Moreover our data. provided information about the feasibility to combine XG-102 with tPA without detrimental action on cell survival. By combining the benefits from a reperfusion treatment with the effects of a neuroprotective compound, it would represent the advantage of bringing better chances to protect the cerebral tissue. Résumé L'attaque cérébrale ou accident vasculaire cérébral, dont la grande majorité est de nature ischémique, constitue la troisième cause de mortalité et d'infirmité dans les pays industrialisés. Résultant de la perte d'approvisionnement de sang au cerveau privant les tissus cérébraux d'oxygène et de glucose, elle induit des dommages neuronaux irréversibles. En dépit du nombre élevé de recherches effectuées pour caractériser les mécanismes pathogènes de l'ischémie. cérébrale, les progrès vers des traitements efficaces restent pauvres. Excepté l'activateur tissulaire du plasminogène (tPA) dont le rôle est de désagréger les caillots sanguins et employé comme thérapie efficace contre l'attaque cérébrale aiguë (reperfusion par thrombolyse) mais limité à un faible pourcentage de patients, il n'y a actuellement aucun autre traitement médical approuvé. Le besoin de nouvelles stratégies thérapeutiques est par conséquent impératif. La mort neuronale dans l'ischémie cérébrale est entre autres due à des mécanismes excitotoxiques survenant rapidement après le début de l'attaque cérébrale. Une des principales voies moléculaires impliquée conduisant à la mort excitotoxique des cellules est la voie de la c-Jun NH2terminal kinase (JNK). Plusieurs études ont déjà montré l'efficacité d'un agent neuroprotecteur d'un nouveau type, un peptide dextrogyre synthétisé sous la forme retro inverso (XG-102, précédemment D-JNKI1) résistant aux protéases, capable de pénétrer dans les cellules et de bloquer sélectivement et fortement l'accès de JNK à plusieurs de ses cibles. Une puissante protection a été observée avec ce composé dans plusieurs modèles d'ischémie (Borsello et al. 2003;Hirt et al. 2004). Ce composé chimérique, construit à partir d'une séquence TAT de 10 acides aminés suivie par une séquence de 20 acides aminés d'un domaine liant JNK (JBD) issu de la molécule JNK protéine inhibitrice. (JIP), induit à la fois une réduction importante de la taille de lésion et un comportement fonctionnel amélioré. De plus il présente une fenêtre thérapeutique étendue. XG-102 a prouvé sa puissante efficacité dans un modèle d'occlusion de l'artère cérébrale moyenne chez la souris avec injection intracerebroventriculaire (i.c.v.) mais afin de pouvoir envisager le développement de ce composé pour l'attaque cérébrale chez l'homme, il était donc nécessaire de déterminer la faisabilité de son administration systémique. Les études faisant l'objet de cette thèse ont permis de montrer une neuroprotection importante avec XG-102 administré de façon systémique après l'occlusion transitoire de l'artère cérébrale moyenne chez la souris (MCAo). De plus nos données ont fourni des informations quant à la faisabilité de combiner XG-102 et tPA, démontrant une protection efficace par XG-102 malgré l'action nuisible du tPA sur la survie des cellules. En combinant les bénéfices de la reperfusion avec les effets d'un composé neurooprotecteur, cela représenterait l'avantage d'apporter des meilleures chances de protéger le tissu cérébral.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was conducted to identify enzyme systems eventually catalysing a local cerebral metabolism of citalopram, a widely used antidepressant of the selective serotonin reuptake inhibitor type. The metabolism of citalopram, of its enantiomers and demethylated metabolites was investigated in rat brain microsomes and in rat and human brain mitochondria. No cytochrome P-450 mediated transformation was observed in rat brain. By analysing H2O2 formation, monoamine oxidase A activity in rat brain mitochondria could be measured. In rat whole brain and in human frontal cortex, putamen, cerebellum and white matter of five brains monoamine oxidase activity was determined by the stereoselective measurement of the production of citalopram propionate. All substrates were metabolised by both forms of MAO, except in rat brain, where monoamine oxidase B activity could not be detected. Apparent Km and Vmax of S-citalopram biotransformation in human frontal cortex by monoamine oxidase B were found to be 266 microM and 6.0 pmol min(-1) mg(-1) protein and by monoamine oxidase A 856 microM and 6.4 pmol min(-1) mg(-1) protein, respectively. These Km values are in the same range as those for serotonin and dopamine metabolism by monoamine oxidases. Thus, the biotransformation of citalopram in the rat and human brain occurs mainly through monoamine oxidases and not, as in the liver, through cytochrome P-450.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Male rats were subjected to "psychological stress" which consisted in 10 sec footshock on the first day followed 24 hr later by a 10 sec stay in the experimental chamber without shock. Intravenous antiserum against alpha-MSH markedly changed the functional state of mesencephalic and hypothalamic DA neurons (assessed by histochemical microfluorimetry) when administered before the second session but not when given before the first session. These observations reveal an interesting parallelism in the temporal characteristics of the effects of alpha-MSH on avoidance behavior and central DA systems.