171 resultados para Surface erosion
Resumo:
Surface functionalization of hydroxyapatite (HA) and beta-tricalcium phosphate (TCP) bioceramics with chemical ligands containing a pyrrogallol moiety was developed to improve the adhesion of bone cell precursors to the biomaterials. Fast and biocompatible copper-free click reaction with azido-modified human fetal osteoblasts resulted in improved cell binding to both HA and TCP bioceramics, opening the way for using this methodology in the preparation of cell-engineered bone implants.
Resumo:
We present a novel numerical algorithm for the simulation of seismic wave propagation in porous media, which is particularly suitable for the accurate modelling of surface wave-type phenomena. The differential equations of motion are based on Biot's theory of poro-elasticity and solved with a pseudospectral approach using Fourier and Chebyshev methods to compute the spatial derivatives along the horizontal and vertical directions, respectively. The time solver is a splitting algorithm that accounts for the stiffness of the differential equations. Due to the Chebyshev operator the grid spacing in the vertical direction is non-uniform and characterized by a denser spatial sampling in the vicinity of interfaces, which allows for a numerically stable and accurate evaluation of higher order surface wave modes. We stretch the grid in the vertical direction to increase the minimum grid spacing and reduce the computational cost. The free-surface boundary conditions are implemented with a characteristics approach, where the characteristic variables are evaluated at zero viscosity. The same procedure is used to model seismic wave propagation at the interface between a fluid and porous medium. In this case, each medium is represented by a different grid and the two grids are combined through a domain-decomposition method. This wavefield decomposition method accounts for the discontinuity of variables and is crucial for an accurate interface treatment. We simulate seismic wave propagation with open-pore and sealed-pore boundary conditions and verify the validity and accuracy of the algorithm by comparing the numerical simulations to analytical solutions based on zero viscosity obtained with the Cagniard-de Hoop method. Finally, we illustrate the suitability of our algorithm for more complex models of porous media involving viscous pore fluids and strongly heterogeneous distributions of the elastic and hydraulic material properties.
Resumo:
In this communication we introduce a low or reduced coherence interferometry technique that can be used to retrieve surface topology on samples with high roughness. Moreover, we will show that the approach enables surface topology measurement also at the interface of so-called turbid media, where multiple scattering inside tissues can be a major issue, preventing accurate measurements.
Resumo:
The T3 complex is known to be expressed on the cell surface of mature T cells together with either the alpha-beta heterodimeric T cell receptor (TCR) or the TCR gamma protein. In a number of immature T cell malignancies, however, T3 has been described exclusively in the cytoplasm. We have investigated five such T cell lines with cytoplasmic T3 and could demonstrate by biosynthetic labeling the presence of the alpha and beta chains of the TCR in the cytoplasm of two of them, CEM and Ichikawa. No surface TCR alpha-beta protein could be detected by staining with the WT31 antibody. These observations, therefore, argue against the concept that expression of the TCR alpha chain controls the surface expression of the T3/TCR complex. Interestingly, phorbol 12-myristate 13-acetate (PMA) induced cell surface expression of T3 protein in these two cell lines only. Moreover, on surface-iodinated CEM cells no association of T3 and TCR molecules could be demonstrated after treatment with PMA, and expression of TCR alpha and beta chains was limited to the cytoplasm. In Ichikawa cells, however, PMA induced surface expression of a mature T3/TCR complex. Our findings indicate that separate regulatory mechanisms may exist for the surface expression of the T3 proteins and for the assembly of the T3/TCR complex.
Resumo:
Staphylococcus aureus infections involve numerous adhesins and toxins, which expression depends on complex regulatory networks. Adhesins include a family of surface proteins covalently attached to the peptidoglycan via a conserved LPXTG motif. Here we determined the protein and mRNA expression of LPXTG-proteins of S. aureus Newman in time-course experiments, and their relation to fibrinogen adherence in vitro. Experiments were performed with mutants in the global accessory-gene regulator (agr), surface protein A (Spa), and fibrinogen-binding protein A (ClfA), as well as during growth in iron-rich or iron-poor media. Surface proteins were recovered by trypsin-shaving of live bacteria. Released peptides were analyzed by liquid chromatography coupled to tandem mass-spectrometry. To unambiguously identify peptides unique to LPXTG-proteins, the analytical conditions were refined using a reference library of S. aureus LPXTG-proteins heterogeneously expressed in surrogate Lactococcus lactis. Transcriptomes were determined by microarrays. Sixteen of the 18 LPXTG-proteins present in S. aureus Newman were detected by proteomics. Nine LPXTG-proteins showed a bell-shape agr-like expression that was abrogated in agr-negative mutants including Spa, fibronectin-binding protein A (FnBPA), ClfA, iron-binding IsdA, and IsdB, immunomodulator SasH, functionally uncharacterized SasD, biofilm-related SasG and methicillin resistance-related FmtB. However, only Spa and SasH modified their proteomic and mRNA profiles in parallel in the parent and its agr- mutant, whereas all other LPXTG-proteins modified their proteomic profiles independently of their mRNA. Moreover, ClfA became highly transcribed and active in fibrinogen-adherence tests during late growth (24 h), whereas it remained poorly detected by proteomics. On the other hand, iron-regulated IsdA-B-C increased their protein expression by >10-times in iron-poor conditions. Thus, proteomic, transcriptomic, and adherence-phenotype demonstrated differential profiles in S. aureus. Moreover, trypsin peptide signatures suggested differential protein domain exposures in various environments, which might be relevant for anti-adhesin vaccines. A comprehensive understanding of the S. aureus physiology should integrate all three approaches.
Resumo:
The CD8 molecule is a glycoprotein expressed on a subset of mature T lymphocytes. It has been postulated to be a receptor for class I major histocompatibility complex molecules. In the mouse, CD8 is a heterodimer composed of Ly-2 and Ly-3 chains. We have isolated and analyzed cDNA and cosmid clones corresponding to the Ly-3 subunit. One of the isolated, cosmid clones was subsequently transfected, alone or in combination with the Ly-2 gene, into mouse Ltk- cells. Analysis of the Ly-2,3 molecules expressed at the surface of the double transfectants indicated that they are serologically and biochemically indistinguishable from their normal counterparts expressed on lymphoid cells. Ltk- cells transfected with the Ly-2 gene alone were shown to react with a subset of anti-CD8 monoclonal antibodies whereas Ly-3 transfectants did not stain with any of the anti-Ly-3 antibodies employed in this study. Since at least one of these antibodies (53-5.8) has been previously shown to recognize an epitope which is retained on the Ly-3 subunit after dissociation of the heterodimeric Ly-2,3 complex, these observations suggest that the expression of the Ly-2 polypeptide is required to permit the detectable cell surface expression of the antigenic determinants carried by the Ly-3 subunit.
Resumo:
In common with many other plasma membrane glycoproteins of eukaryotic origin, the promastigote surface protease (PSP) of the protozoan parasite Leishmania contains a glycosyl-phosphatidylinositol (GPI) membrane anchor. The GPI anchor of Leishmania major PSP was purified following proteolysis of the PSP and analyzed by two-dimensional 1H-1H NMR, compositional and methylation linkage analyses, chemical and enzymatic modifications, and amino acid sequencing. From these results, the structure of the GPI-containing peptide was found to be Asp-Gly-Gly-Asn-ethanolamine-PO4-6Man alpha 1-6Man alpha 1-4GlcN alpha 1-6myo-inositol-1-PO4-(1-alkyl-2-acyl-glycerol). The glycan structure is identical to the conserved glycan core regions of the GPI anchor of Trypanosoma brucei variant surface glycoprotein and rat brain Thy-1 antigen, supporting the notion that this portion of GPIs are highly conserved. The phosphatidylinositol moiety of the PSP anchor is unusual, containing a fully saturated, unbranched 1-O-alkyl chain (mainly C24:0) and a mixture of fully saturated unbranched 2-O-acyl chains (C12:0, C14:0, C16:0, and C18:0). This lipid composition differs significantly from those of the GPIs of T. brucei variant surface glycoprotein and mammalian erythrocyte acetylcholinesterase but is similar to that of a family of glycosylated phosphoinositides found uniquely in Leishmania.
Resumo:
Assessing in wild populations how fitness is impacted by inbreeding and genetic drift is a major goal for conservation biology. An approach to measure the detrimental effects of inbreeding on fitness is to estimate correlations between molecular variation and phenotypic performances within and among populations. Our study investigated the effect of individual multilocus heterozygosity on body size, body condition and reproductive investment of males (that is, chorus attendance) and females (that is, clutch mass and egg size) in both small fragmented and large non-fragmented populations of European tree frog (Hyla arborea). Because adult size and/or condition and reproductive investment are usually related, genetic erosion may have detrimental effects directly on reproductive investment, and also on individual body size and condition that in turn may affect reproductive investment. We confirmed that the reproductive investment was highly size-dependent for both sexes. Larger females invested more in offspring production, and larger males attended the chorus in the pond more often. Our results did not provide evidence for a decline in body size, condition and reproductive effort with decreased multilocus heterozygosity both within and among populations. We showed that the lack of heterozygosity-fitness correlations within populations probably resulted from low inbreeding levels (inferior to ca. 20% full-sib mating rate), even in the small fragmented populations. The detrimental effects of fixation load were either low in adults or hidden by environmental variation among populations. These findings will be useful to design specific management actions to improve population persistence.
Resumo:
Voltage-gated sodium channels (Navs) are glycoproteins composed of a pore-forming α-subunit and associated β-subunits that regulate Nav α-subunit plasma membrane density and biophysical properties. Glycosylation of the Nav α-subunit also directly affects Navs gating. β-subunits and glycosylation thus comodulate Nav α-subunit gating. We hypothesized that β-subunits could directly influence α-subunit glycosylation. Whole-cell patch clamp of HEK293 cells revealed that both β1- and β3-subunits coexpression shifted V ½ of steady-state activation and inactivation and increased Nav1.7-mediated I Na density. Biotinylation of cell surface proteins, combined with the use of deglycosydases, confirmed that Nav1.7 α-subunits exist in multiple glycosylated states. The α-subunit intracellular fraction was found in a core-glycosylated state, migrating at ~250 kDa. At the plasma membrane, in addition to the core-glycosylated form, a fully glycosylated form of Nav1.7 (~280 kDa) was observed. This higher band shifted to an intermediate band (~260 kDa) when β1-subunits were coexpressed, suggesting that the β1-subunit promotes an alternative glycosylated form of Nav1.7. Furthermore, the β1-subunit increased the expression of this alternative glycosylated form and the β3-subunit increased the expression of the core-glycosylated form of Nav1.7. This study describes a novel role for β1- and β3-subunits in the modulation of Nav1.7 α-subunit glycosylation and cell surface expression.
Resumo:
Résumé: Le développement rapide de nouvelles technologies comme l'imagerie médicale a permis l'expansion des études sur les fonctions cérébrales. Le rôle principal des études fonctionnelles cérébrales est de comparer l'activation neuronale entre différents individus. Dans ce contexte, la variabilité anatomique de la taille et de la forme du cerveau pose un problème majeur. Les méthodes actuelles permettent les comparaisons interindividuelles par la normalisation des cerveaux en utilisant un cerveau standard. Les cerveaux standards les plus utilisés actuellement sont le cerveau de Talairach et le cerveau de l'Institut Neurologique de Montréal (MNI) (SPM99). Les méthodes de recalage qui utilisent le cerveau de Talairach, ou celui de MNI, ne sont pas suffisamment précises pour superposer les parties plus variables d'un cortex cérébral (p.ex., le néocortex ou la zone perisylvienne), ainsi que les régions qui ont une asymétrie très importante entre les deux hémisphères. Le but de ce projet est d'évaluer une nouvelle technique de traitement d'images basée sur le recalage non-rigide et utilisant les repères anatomiques. Tout d'abord, nous devons identifier et extraire les structures anatomiques (les repères anatomiques) dans le cerveau à déformer et celui de référence. La correspondance entre ces deux jeux de repères nous permet de déterminer en 3D la déformation appropriée. Pour les repères anatomiques, nous utilisons six points de contrôle qui sont situés : un sur le gyrus de Heschl, un sur la zone motrice de la main et le dernier sur la fissure sylvienne, bilatéralement. Evaluation de notre programme de recalage est accomplie sur les images d'IRM et d'IRMf de neuf sujets parmi dix-huit qui ont participés dans une étude précédente de Maeder et al. Le résultat sur les images anatomiques, IRM, montre le déplacement des repères anatomiques du cerveau à déformer à la position des repères anatomiques de cerveau de référence. La distance du cerveau à déformer par rapport au cerveau de référence diminue après le recalage. Le recalage des images fonctionnelles, IRMf, ne montre pas de variation significative. Le petit nombre de repères, six points de contrôle, n'est pas suffisant pour produire les modifications des cartes statistiques. Cette thèse ouvre la voie à une nouvelle technique de recalage du cortex cérébral dont la direction principale est le recalage de plusieurs points représentant un sillon cérébral. Abstract : The fast development of new technologies such as digital medical imaging brought to the expansion of brain functional studies. One of the methodolgical key issue in brain functional studies is to compare neuronal activation between individuals. In this context, the great variability of brain size and shape is a major problem. Current methods allow inter-individual comparisions by means of normalisation of subjects' brains in relation to a standard brain. A largerly used standard brains are the proportional grid of Talairach and Tournoux and the Montreal Neurological Insititute standard brain (SPM99). However, there is a lack of more precise methods for the superposition of more variable portions of the cerebral cortex (e.g, neocrotex and perisyvlian zone) and in brain regions highly asymmetric between the two cerebral hemipsheres (e.g. planum termporale). The aim of this thesis is to evaluate a new image processing technique based on non-linear model-based registration. Contrary to the intensity-based, model-based registration uses spatial and not intensitiy information to fit one image to another. We extract identifiable anatomical features (point landmarks) in both deforming and target images and by their correspondence we determine the appropriate deformation in 3D. As landmarks, we use six control points that are situated: one on the Heschl'y Gyrus, one on the motor hand area, and one on the sylvian fissure, bilaterally. The evaluation of this model-based approach is performed on MRI and fMRI images of nine of eighteen subjects participating in the Maeder et al. study. Results on anatomical, i.e. MRI, images, show the mouvement of the deforming brain control points to the location of the reference brain control points. The distance of the deforming brain to the reference brain is smallest after the registration compared to the distance before the registration. Registration of functional images, i.e fMRI, doesn't show a significant variation. The small number of registration landmarks, i.e. six, is obvious not sufficient to produce significant modification on the fMRI statistical maps. This thesis opens the way to a new computation technique for cortex registration in which the main directions will be improvement of the registation algorithm, using not only one point as landmark, but many points, representing one particular sulcus.
Resumo:
Different anchoring groups have been studied with the aim of covalently binding organic linkers to the surface of alumina ceramic foams. The results suggested that a higher degree of functionalization was achieved with a pyrogallol derivative - as compared to its catechol analogue - based on the XPS analysis of the ceramic surface. The conjugation of organic ligands to the surface of these alumina materials was corroborated by DNP-MAS NMR measurements.
Resumo:
Estimation of the dimensions of fluvial geobodies from core data is a notoriously difficult problem in reservoir modeling. To try and improve such estimates and, hence, reduce uncertainty in geomodels, data on dunes, unit bars, cross-bar channels, and compound bars and their associated deposits are presented herein from the sand-bed braided South Saskatchewan River, Canada. These data are used to test models that relate the scale of the formative bed forms to the dimensions of the preserved deposits and, therefore, provide an insight as to how such deposits may be preserved over geologic time. The preservation of bed-form geometry is quantified by comparing the Alluvial architecture above and below the maximum erosion depth of the modem channel deposits. This comparison shows that there is no significant difference in the mean set thickness of dune cross-strata above and below the basal erosion surface of the contemporary channel, thus suggesting that dimensional relationships between dune deposits and the formative bed-form dimensions are likely to be valid from both recent and older deposits. The data show that estimates of mean bankfull flow depth derived from dune, unit bar, and cross-bar channel deposits are all very similar. Thus, the use of all these metrics together can provide a useful check that all components and scales of the alluvial architecture have been identified correctly when building reservoir models. The data also highlight several practical issues with identifying and applying data relating to cross-strata. For example, the deposits of unit bars were found to be severely truncated in length and width, with only approximately 10% of the mean bar-form length remaining, and thus making identification in section difficult. For similar reasons, the deposits of compound bars were found to be especially difficult to recognize, and hence, estimates of channel depth based on this method may be problematic. Where only core data are available (i.e., no outcrop data exist), formative flow depths are suggested to be best reconstructed using cross-strata formed by dunes. However, theoretical relationships between the distribution of set thicknesses and formative dune height are found to result in slight overestimates of the latter and, hence, mean bankfull flow depths derived from these measurements. This article illustrates that the preservation of fluvial cross-strata and, thus, the paleohydraulic inferences that can be drawn from them, are a function of the ratio of the size and migration rate of bed forms and the time scale of aggradation and channel migration. These factors must thus be considered when deciding on appropriate length:thickness ratios for the purposes of object-based modeling in reservoir characterization.
Resumo:
Solid tumor growth triggers a wound healing response. Similar to wound healing, fibroblasts in the tumor stroma differentiate into myofibroblasts (also referred to as cancer-associated fibroblasts) primarily, but not exclusively, in response to transforming growth factor-β (TGF-β). Myofibroblasts in turn enhance tumor progression by remodeling the stroma. Among proteases implicated in stroma remodeling, matrix metalloproteinases (MMPs), including MMP-9, play a prominent role. Recent evidence indicates that MMP-9 recruitment to the tumor cell surface enhances tumor growth and invasion. In the present work, we addressed the potential relevance of MMP-9 recruitment to and activity at the surface of fibroblasts. We show that recruitment of MMP-9 to the fibroblast cell surface occurs through its fibronectin-like (FN) domain and that the molecule responsible for the recruitment is lysyl hydroxylase 3 (LH3). Functional assays suggest that both pro- and active MMP-9 trigger α-smooth muscle actin expression in cultured fibroblasts, reflecting myofibroblast differentiation, possibly as a result of TGF-β activation. Moreover, the recombinant FN domain inhibited both MMP-9-induced TGF-β activation and α-smooth muscle actin expression by displacing MMP-9 from the fibroblast cell surface. Together our results uncover LH3 as a new docking receptor of MMP-9 on the fibroblast cell surface and demonstrate that the MMP-9 FN domain is essential for the interaction. They also show that the recombinant FN domain inhibits MMP-9-induced TGF-β activation and fibroblast differentiation, providing a potentially attractive therapeutic reagent toward attenuating tumor progression where MMP-9 activity is strongly implicated.